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In this dissertation, I offer and defend three theses in formal episte-

mology: (i) that Bayesianism is consistent with the search for as-yet-unknown

explanations of otherwise improbable data; (ii) that there is a viable classical

statistical solution to the problem of the priors; and (iii) that the distinction

between evidential and causal decision theory is overblown at best, and merely

apparent at worst.
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Chapter 1

Origins of Life Research Does Not Rest on a

Mistake

1.1 Introduction

Self-replicating molecules are complex. Thus even if each individual

step in their natural construction was probable, the overall probability of

randomly constructing a complete self-replicator could be minuscule.2 And

given this, some have been unable to rest comfortably with the idea that self-

replicators and thus life arose by chance; they contend that there must be some

further explanation available.3 Some are right now in laboratories searching

for that further explanation.

This chapter is a version of a paper published in 2016. See: Brian Knab. Origins of
Life Research Does Not Rest on a Mistake. Ergo, 2016.

2In order for this to be true, by a ‘randomly generated’ step, we must mean a step
which is probabilistically independent of the prior steps. Also, it is important to note that –
granting the random construction of a particular self-replicator along a particular path was
improbable – it does not follow that the random construction of self-replicators in general
was improbable. If there were many possible self-replicators, or if, for any particular self
replicator, there were many ways to construct that self-replicator, then self-replication would
not be an improbable outcome. (Thanks to an anonymous reviewer for this latter point.) As
we’ll see, I am going to grant that self-replication is, in general, improbable. The question I
am concerned with is: granting self-replication is improbable, what is the rational reaction
to this improbability?

3Roger White attributes this view to origins of life scientists J.D. Bernal, Manfred Eigen,
Christian De Duve, and Richard Dawkins.White (2007)
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Roger White – in his 2007 paper, “Does Origins of Life Research Rest on

a Mistake?” – argues that this search is unmotivated. He does not dispute the

claim that it was improbable that life should have arisen by chance. Instead

he argues: the fact that it was improbable is no reason to think that it didn’t.

Here, I defend the searchers against White. His argument overgener-

alizes. It entails that it is always irrational to search for an explanation of

currently inexplicable empirical data. But this is not always irrational.

Further, I argue that it often is reasonable to search for alternative

explanations of your data, upon discovering that it is very improbable that

that data should have arisen by chance. It is reasonable to do so when you

are unsure about the conditions under which your data arose. In recognizing

this, we can explain both why we ought to search for an explanation of the

origin of life, but also I think, why we ought to search for an explanation in

the related case of the fine-tuning of the universe.

1.2 Preliminaries

Allow me some preliminaries. First, I will refer to the hypothesis that

an event happened by chance as the chance hypothesis. What I mean is: the

hypothesis that an event happened by chance, under some (often implicit)

dominant probability distribution over the space of events. Suppose that you

have two dice and you roll a double six. The chance hypothesis (in normal

contexts) is the hypothesis that the dice are fair.4

4The chance hypothesis need not, however, be uniform over the space of atomic events
– imagine that we confront a pair of trapezoidal six-sided dice, for example. Here the
dominant distribution will roughly be the one which assigns a probability to each face equal
to the ratio of the surface area of that face to the total surface area of each die. In this
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Second, I will assume that a self-replicating molecule, and thus life,

was an improbable outcome under the relevant chance hypothesis. De Duve

de Duve (1991), for example, claims that the probability of life’s arising by

chance was less than 1 in 10 raised to the 300th power. Hoyle and Wick-

ramasinghe Hoyle & Wickramasinghe (1981) calculate it to be around 1 in

10 raised to the 40,000th power.5 Very roughly, this is the probability that

self-replicating molecules should arise through the haphazard mixing of the

non-self-replicating material present on early Earth. Without getting into the

details, it’s hard to evaluate these claims. But luckily, we needn’t; we’re just

going to grant them.

Third, the mere fact that an event occurred which was improbable,

according to some hypothesis, is not evidence that that hypothesis is false. I

once read that every time you shuffle a deck of cards, and deal a hand in a game

of Spades, say, it is likely that that particular hand has never been generated

in the entire history of card play. This, because the number of distinct ways to

distribute 52 cards among four players is 1.25× 1028, which is about 1 billion

times greater than the number of grains of sand on Earth.6 Nevertheless, most

hands are not evidence against the hypothesis that the cards were randomly

shuffled.

This, however, raises a question: when is the occurrence of an event,

case, a statement like ‘you rolled snake eyes by chance’ remains perfectly intelligible, even
though the probability distribution over each face is not uniform. Of course there are
tricky questions here – why prefer the dominant probability model to others? And how do
dominant probability models become dominant in the first place? I’m going to try to avoid
saying anything here that commits me to an answer to any of these larger questions.

5Both of the (de Duve, 1991) and (Hoyle & Wickramasinghe, 1981) references are from
White’s White (2007) paper, and he attributes them to (Fry, 2000).

6According to NPR’s estimate of the number of grains of sand on Earth (Krulwich, 2012).
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improbable according to some hypothesis, evidence against that hypothesis?

The answer, according to White and which we will rely on, is given by the

following theorem:

P (C|E) < P (C) if and only if P (E|¬C) > P (E|C) (1.1)

In words: if C is the hypothesis that the cards were randomly shuffled, and

we confront some evidence E – i.e., a particular hand – that hand is evidence

against the random-shuffling hypothesis if and only if that hand is more likely

given the cards were not shuffled randomly, than given they were.

In the following, we will not be directly concerned with (1.1), but in-

stead with a necessary condition that follows on (1.1); namely, that if {B1, . . . Bn}

forms a partition of ¬C – that is, if ¬C is equivalent to the disjunction

B1 ∨B2 ∨ . . . ∨Bn, and B1, . . . , Bn are mutually exclusive – then

P (C|E) < P (C) only if (1.2)

P (E|C) < P (E|B1) or P (E|C) < P (E|B2) or . . . or P (E|C) < P (E|Bn)7

(1.3)

Or again in words: Suppose I know that the cards were either shuffled ran-

domly or that either Bob stacked the deck or Bill did. Then I get evidence

the cards were not shuffled randomly only if my hand is more likely given Bob

stacked the deck, or given Bill did.

7Suppose that for all i, P (E|C) ≥ P (E|Bi). Then we have

P (E|¬C) =
∑
i

P (Bi&E|¬C) =
∑
i

P (E|Bi&¬C) · P (Bi|¬C) =
∑
i

P (E|Bi) · P (Bi|¬C)

≤
∑
i

P (E|C) · P (Bi|¬C) = P (E|C) ·
∑
i

P (Bi|¬C) = P (E|C) · P (¬C|¬C) = P (E|C)

Hence by theorem (1), P (C|E) ≥ P (C)

4



1.3 White’s Example

Preliminaries discharged, I turn now to White’s argument; it begins

with an example.

Suppose we are headed to the English seaside. And consider three

things we might confront upon arrival:

Pebble-R The pebbles on the beach are scattered haphazardly over the beach.

Pebble-N The pebbles “cover the beach in descending order of size toward

the shoreline.”

Pebble-I The pebbles are “arranged to form a stick figure with a smile on its

face” (White, 2007, 455).8

Each of these patterns could arise by chance – that is, via the standard physical

processes by which pebbles come to lie on beaches, whatever they are. And let

us suppose that each of our three patterns is equally likely under this chance

hypothesis. (Nothing turns on this.)

White notices that if we confronted Pebble-N or Pebble-I, we would be

suspicious of the chance hypothesis – we would not think that the pebbles just

happened to be ordered by size, or arranged into the shape of a stick figure,

by a mechanism randomly tossing pebbles onto the beach.

And according to (1.1), we get evidence that a pebble arrangement did

not arise by chance only if it was more likely given it did not arise by chance

than given it did.

8Pebble-R for ‘random’, Pebble-N for ‘non-intentionally biased’ and Pebble-I for ‘inten-
tionally biased.’
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Now, for White, to say that an arrangement did not arise by chance

is just to say that the process which generated it was biased in some way.

And pebbles arranged in order of their size or into the shape of a stick figure

helpfully exemplify the two distinctive ways White thinks a process might be

biased. He writes,

A process such as pebble arranging is intentionally biased if certain

elementary possible outcomes are more likely than others due to the

purposeful action of some agent. . . A process is non-intentionally

biased if this biasing is [due to]. . ., say, the impersonal laws of na-

ture together with properties of matter and the structure of phys-

ical mechanisms (White, 2007, 462).

Call our evidence E and the chance hypothesis C. Let I be the hy-

pothesis of intentional biasing, and NI be the hypothesis of non-intentional

biasing. Then, by the necessary condition specified in (1.3) above, we have

P (C|E) < P (C) only if P (E|I) > P (E|C) or P (E|NI) > P (E|C) (1.4)

That is, the chance hypothesis is disconfirmed only if our data was more likely

given intentional or non-intentional biasing, than given chance.

Note that were we to confront pebbles arranged in order of their size

or into the shape of a stick figure, this necessary condition would be satisfied.

White writes about the former,

That [the pebbles] should be arranged roughly in order of size

seems more likely on the assumption that the process shuffling the

pebbles was non-intentionally biased, than if they just fell on the

beach by chance. . . [If] attributes of the pebbles interact with the

physical laws . . . simple correlations between physical parameters

such as size and location are the kind of phenomena we should

expect to find (White, 2007, 462).
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And about the latter,

The stick figure is one of a small class of interesting patterns, and if

an agent was to go to the trouble of influencing the way the stones

are arranged, there is a good chance she would arrange them in an

interesting way (White, 2007, 462).

White further notices, however, that if we confronted pebbles haphaz-

ardly scattered across the beach, (1.4) would not be satisfied. Given an agent

arranged the pebbles, the particular haphazard scatter we witness would not

be likely. Further there aren’t any obvious correlations between the physi-

cal attributes of the pebbles, so neither is the arrangement likely given non-

intentional biasing. Intentional and non-intentional biasing thus make the

haphazard arrangement just as unlikely as the chance hypothesis. And there-

fore a haphazard scatter does not call the chance hypothesis into question.

I think that this is an illuminating answer to the question of why certain

arrangements of pebbles at the English seaside might cause us to suspect the

chance hypothesis, while other, perhaps equally unlikely, arrangements under

that hypothesis would not.

White now wants to generalize to the origins of life. He wonders: are

molecules – arranged into self-replicating structures – akin to pebbles scattered

haphazardly across a beach, or are they instead like pebbles arranged in order

of their size, or perhaps, like pebbles arranged into the shape of a stick figure?

1.4 White’s Argument

The rest of White’s argument is now straightforward: First, he notes

that intentional biasing in favor of life is not a hypothesis taken seriously by

7



most scientists. Thus our evidence calls the chance hypothesis into question

only if life was more likely given non-intentional biasing than it was given

chance. But, White argues, life was not more likely given non-intentional

biasing than given chance. And hence we have no reason to doubt the chance

hypothesis.

That argument is valid, and I won’t dispute the claim that scientists

do not take the intentional biasing hypothesis seriously. But why should we

agree with White that – given the process was non-intentionally biased – life

would not be a likely outcome, or at least more likely than it would be given

mere chance? White writes,

I can’t imagine why anyone would think [that life is more likely,

given the process by which it arose was non-intentionally biased].

While there is at least room to argue that a rational agent is likely

to influence [the process] in order to allow for the evolution of life,

to suppose that impersonal physical laws are likely to constrain [it]

in this way can only be based on a confused anthropomorphism . . .

Even if the value we attach to life is something objective, whether

it be moral or aesthetic, or whatever, it could only conceivably

have influence on the behavior of an agent. Blind physical laws are

no more naturally drawn toward states of affairs with value than

blind chance is (White, 2007, 466).

And later,

Are self-replicating, life producing molecules more likely to appear

on [the assumption that the process by which life arose was non-

intentionally biased]? . . . What makes certain molecular configu-

rations stand out from the multitude of possibilities seems to be

that they are capable of developing into something which strikes

us as rather marvelous, namely a world of living creatures. But

8



there is no conceivable reason that blind forces of nature or physi-

cal attributes should be biased toward the marvelous (White, 2007,

467).

In conclusion, White writes, “unless we suspect that life arose on pur-

pose, we should be quite content . . . in seeing life as an extremely improbable,

‘happy accident”’ (White, 2007, 467).

This, then, is the mistake that origins of life research rests upon: sci-

entists, searching in their laboratories, mistakenly believe that they have good

reason to suppose the chance hypothesis is false, and hence that some other

non-chancy explanation is available. But their data does not disconfirm the

chance hypothesis, and hence they have no reason to search for an alternative

explanation.

1.5 Counter

Despite White’s argument, I think the searchers are justified in seeking

an alternative explanation of life’s origin; I turn now to their defense.

First, consider a case. Suppose we filled 1,000 paper bags full of the

molecules thought to be plentiful on early Earth, and we shook them up. And

suppose that when we dumped out the bags, 90 percent of them yielded self-

replicators. It could happen that 90 percent of our bags yield self-replicators

even if no bias exists, and thus the probability of generating a self-replicator

is minuscule. Nevertheless, I contend, it would not be reasonable to believe

this chance hypothesis in the face of our data. We should not be content, in

other words, to see our paper bag self-replicators as an “extremely improb-

able, ‘happy accident.’” And this would be true, I think, even if (i) we are

9



unwilling to countenance intentional intervention as a plausible explanation

of the outcome, and (ii) we cannot at present tell any plausible story which

would explain why “the impersonal laws of nature together with properties

of physical matter and the structure of physical mechanisms” should favor

self-replicators.

For a more realistic case, but with a similar upshot: suppose that

we discovered that the rate of heart disease in San Diego was twenty times

higher than in other cities of similar size and demographics. That would be

strong evidence that something in San Diego is amplifying (or something in

the other similar cities is suppressing) heart disease. And again it would not

be reasonable, in the face of that data, to conclude that the amplified rate

of heart disease in San Diego is just a sad accident – that the rate of heart

disease in San Diego just, by chance, happens to be twenty times higher than

in similar cities. And this would be true even though (i) agential intervention

is not a plausible explanation of amplified rates of heart disease in San Diego,

and (ii) we have no antecedent reason to believe that blind physical laws and

forces of nature have it out for San Diegans.

So, data can call a chance hypothesis into question, or render it un-

reasonable to believe, even when (i) agential intervention is not a plausible

explanation of that data, and (ii) we cannot presently tell a story about why

blind physical laws and physical forces should favor that data. And thus, the

fact that we cannot presently offer “any conceivable reason that blind physical

forces of nature or physical attributes should be biased toward the marvelous”

does not entail that the existence of the marvelous – i.e., the presence of life

on Earth – fails to call into question the chance hypothesis, nor does it require

that we view the marvelous as a happy accident. This is true even if, as with

10



our bags of molecules and our San Diegans, we’re committed to the view that

intentional biasing is not a plausible explanation of the outcome.

1.6 Diagnosis

But how can this be? Didn’t White rely on a theorem of the probability

calculus? Am I denying math or Bayesianism or both?

White did rely on a theorem. And I am neither denying Bayesianism,

nor math. Here is the theorem again: Where {B1, . . . , Bn} forms a partition

of ¬C,

P (C|E) < P (C) only if (1.2)

P (E|C) < P (E|B1) or P (E|C) < P (E|B2) or . . . or P (E|C) < P (E|Bn)
(1.3)

To see why what I’ve said is consistent with this theorem, consider

another example: suppose that a coin has been discovered, deep in a tectonic

fissure, clearly formed by blind physical laws and forces of nature. And now

suppose that I hand you a coin, and I tell you: this is either a standard, fair

coin, or it’s the tectonic coin. (The tectonic coin is, of course, indistinguishable

from a standard coin.) We’ll flip it, and see how our subjective probability

functions evolve.

We have no reason to think that blind physical laws and forces of nature

should favor heads over tails or vice versa, and so, let’s suppose, if we knew the

coin was tectonic, we would adopt a uniform distribution over every possible

weighting.9

9Setting Bertrand’s paradox aside at our peril.
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Now suppose we flip the coin twice, and it comes up heads both times.

Notice that the chance hypothesis is disconfirmed by this evidence.10 And

because it’s a theorem, you must therefore satisfy the necessary condition

(1.3). In the case of the tectonic coin you do satisfy (1.3) simply because

double heads is more likely given the coin is tectonic than it is given it’s fair.

But the moral is: you can think that there are only two alternatives –

a chance hypothesis versus a blind physical process that is just as likely to be

biased against, as in favor of, each particular elementary outcome – and yet

in witnessing those elementary outcomes receive evidence that disconfirms the

chance hypothesis.

Perhaps, returning to our earlier examples, when we started shaking our

bags of molecules, we thought that blind physical processes were just as likely

to favor as to disfavor self-replicators. Nevertheless, if the chance hypothesis is

that each step in a molecular construction occurs randomly, witnessing enough

self-replicators will disconfirm that hypothesis. The same goes for our San

Diegans; perhaps prior to witnessing any data, we thought blind physical

forces were just as likely to suppress as to amplify the rate of heart disease in

San Diego. Nevertheless, if the chance hypothesis is that, in fact, nothing is

amplifying or suppressing heart disease in San Diego, witnessing enough heart

disease will again disconfirm that hypothesis.

10

P (HH|Fair) =
1

4

P (HH|Tectonic) =

∫ 1

0

P (HH|w) · P (w)dw =

∫ 1

0

w2 · 1dw =
1

3

Hence by theorem (1.1), Fair is disconfirmed.

12



The illicit inference that White draws is: because we have no reason

to think that a blind physical mechanism would favor the marvelous over the

non-marvelous, that therefore our total marvelous evidence was just as likely

to be produced by chance as by that blind physical mechanism. The latter

doesn’t follow from the former.

1.7 Responses

I see two possible responses available to White. First, there is something

a bit strange about our tectonic coin, which I have passed over thus far in

silence. Perhaps you noticed that had we flipped our coin only once, then the

chance hypothesis would not have been disconfirmed by a heads outcome.11

And so White might contend: our actual evidence, in the case of the origins

of life, is not like double heads, but like a single heads.

But first, to stave off any confusion, it is worth pointing out that some-

times a chance hypothesis can be disconfirmed by a single data point. Suppose

that I hand you a coin which is either weighted to come up tails with prob-

ability .75, or it is the tectonic coin. Suppose we flip the coin once, and it

comes up heads. If the chance hypothesis is that the coin is the tails-weighted

coin, then that hypothesis is disconfirmed by a single heads outcome.

Second, White could perhaps contend that our evidence is like a single

11

P (H|Fair) =
1

2

P (H|Tectonic) =

∫ 1

0

w dw =
1

2

13



heads outcome, simply in that it is equally likely under the chance and non-

intentional bias hypotheses. But my point is that he must argue for this

conclusion. White infers from the fact that “there is no conceivable reason

that blind forces of nature or physical attributes should be biased toward

the marvelous” that therefore our evidence is equally likely under the chance

and non-intentional bias hypotheses. But, again, this doesn’t follow. We can

suppose the chance and the blind physical forces hypotheses do assign equal

probability to the generation of a single self-replicator. Nevertheless, if our

data has a certain composition – if it’s akin to a tectonic coin coming up

heads twice – then the chance hypothesis will yet be disconfirmed by our data.

So in order for White to successfully argue that the chance hypothesis is

not disconfirmed, he has to (i) tell us what the chance hypothesis is, (ii) argue

that it assigns to self-replicators a probability equal to or greater than the

probability assigned by the hypothesis of unknown bias, and finally (iii) argue

that our data is not composed in such a way that it nevertheless disconfirms

the chance hypothesis. And that strikes me as a tall order.

The second response available to White is this: he can argue that while

perhaps he hasn’t definitively shown that our data fails to disconfirm the

chance hypothesis, neither have origins of life researchers definitively shown

that it does disconfirm the chance hypothesis.

Allow me, then, to offer a toy model to the origins of life researchers,

which I think can plausibly be extended to a probabilistic model of the origins

of life, and according to which a self-replicator does disconfirm the chance

hypothesis.

Imagine Nature sitting down at a 26-letter typewriter, and think of

every key on the typewriter as a molecule present on early Earth. A priori, it

14



seems that Nature is just as likely to be biased in favor of typing the letter a as

she is to be biased in favor of typing any letter, let’s suppose, and this induces

a uniform prior distribution over the space of possible bias hypotheses.12 Let

us suppose further that the chance hypothesis is that every key is equally likely

to be struck. Nature then begins to type.

Certain strings, of course, would do nothing to disconfirm the chance

hypothesis, e.g.,

alkwersbn13

But certain other fairly mundane strings would disconfirm the chance hypoth-

esis, e.g.,

alkklaaal14

12Officially, this will induce a Dirichlet prior with 25 concentration parameters all equal
to, say, 1.

13

P (alkwersbn|Chance) =
1

269
≈ 1.8× 10−13

P (alkwersbn|Unknown Bias) =

∫
W

P (alkwersbn&W )dW

= P (alkwersbn|W ) · P (W )dW

=

∫
W

wawlwkwwwewrwswbwn · Γ(26)dW

=
Γ(26)

Γ(35)
≈ 5× 10−14

Hence the chance hypothesis is confirmed.
14

P (alklaaal|Chance) =
1

269
≈ 1.8× 10−13

P (alklaaal|Unknown Bias) =

∫
W

w4
aw

2
kw

3
l · Γ(26)dW

=
Γ(26) · Γ(5) · Γ(4) · Γ(3)

Γ(35)
≈ 1.5× 10−11

Hence the chance hypothesis is disconfirmed.
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What is the difference between alkwersbn and alkklaaal? Repetition. Rep-

etition is indicative of bias in favor of the repeated outcomes, and is also

evidence that not every outcome is equally likely; i.e., it is evidence that the

chance hypothesis is false.

Thus, to complete the argument, we can simply note that, because

self - replicating molecules consist of repeated molecular substructures, those

molecules disconfirm the chance hypothesis. That, in other words, is a reason

to think that self-replicating molecules are more likely to result via blind forces

of nature than via chance, and it is a reason which simply rests on a prior

uniform distribution over the space of bias hypotheses, and not on a confused

anthropomorphism.

Now, to be fair, White does anticipate something like the story I am

telling here, and he writes in response that, in fact, “the picture given by de

Duve and others is [that] ... the molecular parts required to make up the

replication machinery come in various sizes and structures, and they are not

arranged in anything like a simple repetitive pattern” (473). In other words,

self-replicating molecules are more like the string alkwersbn than they are like

the string alkklaaal.

But that strikes me as frankly incredible, and White does not give us

a specific reference. You cannot look at the double helix of DNA, which is

a (two-meter long, in humans,) molecule consisting of a sugar, a phosphate,

and four nucleobases repeated over and over and over, and not see a simple

repetitive pattern. It is as though Nature sat down at the typewriter described
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above, and typed

AAAGTCTGACAAGCTACGCGGG . . . 15

And that, for the same reason as the string alkklaaal, will certainly disconfirm

the chance hypothesis.

Of course, this model is not a perfect probabilistic representation of

the origins of life. But that’s not the point. The point is only that its general

contours look right. And on any model which shares those general contours,

a self-replicating molecule will disconfirm the chance hypothesis.

1.8 Fine Tuning

We have thus far been considering the molecular origins of life; I now

want to turn to another case White discusses that is related, and which is I

think more amenable to his argument: the apparent fine-tuning of the universe.

Some have noticed, for example, that had the rate of expansion of

the early universe been slightly different, then a stable universe capable of

producing and sustaining life would not have existed.16 They have inferred

from this that it was extremely improbable that a universe like ours should

exist. And here, we have access to only a single data point – i.e., a single

universe. Thus we cannot rely, as in the case of the molecular origins of life, on

the presence of repetition to show that the chance hypothesis is disconfirmed.

15A,G, T, and C, of course, for the nucleobases adenine, guanine, thymine, and cytosine,
which compose the nucelotides that compose DNA.

16See (Hawking, 1996, 156), “If the rate of expansion one second after the Big Bang had
been smaller by even one part in one hundred thousand million million, the universe would
have re-collapsed before it ever reached its present state.”
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Though that last paragraph does not establish it, let us grant that,

under the chance hypothesis, it was unlikely that our life-supporting universe

should exist. If we’re unwilling to countenance agential intervention as an

explanation, must we, by White’s argument, accept that a fine-tuned universe

was an extremely improbable ‘happy accident’?

The answer is ‘no,’ and this brings me to a second, much simpler,

objection I want to raise to White’s overall argument.

Suppose White is right that our evidence does not disconfirm the hy-

pothesis that life and the universe arose by chance. And consider one last

case. Suppose that in addition to a coin, our tectonic fissure had yielded a die

with, say, one quintillion sides. We’ve analyzed the die in the lab, and have

discovered that the die is either fair, or it is weighted to only come up 1 or to

only come up 2 or . . . or to only come up 1 quintillion. Along with White, we

dub the hypothesis that the die is fair the ‘chance hypothesis.’

Because we have no reason to favor any one of these hypotheses, it seems

reasonable to adopt a uniform distribution over each weighting hypothesis.

That is, given what I’ve said so far, we should think it equally like that the

die is fair as that the die is weighted to only come up in one particular way.

Now, suppose we roll the die only once, and it comes up, say, 42. What should

we think? Should we think that 42 was just an extremely improbable ‘happy

accident’?

We should not! If we’re Bayesians, upon witnessing 42, we should think

it 1 quintillion times more likely that the die is weighted to come up only 42,
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than that it is fair.17

Put simply: the fact that the chance hypothesis is not disconfirmed by

our evidence does not entail that we should think the chance hypothesis is

true, and that therefore the outcome was a happy accident. The important

question, if we’re Bayesians, is not ‘was the chance hypothesis disconfirmed?’

but instead ‘is the chance hypothesis, in light of our data, at all likely to be

true?’

I think that our epistemic situation, with respect to the origins of life

and the universe is directly analogous to our epistemic situation with respect

to our quintillion-sided tectonic die. (Think of each face of the die as a pos-

sible rate of expansion of the early universe, or as a possible molecular con-

figuration.) While it’s perhaps possible that a fine-tuned universe, or a self-

replicating molecule, was a very unlikely chancy accident, it is also possible

that a fine-tuned universe and a self-replicating molecule were very likely or

inevitable. And given our limited access, in both cases, to the conditions un-

der which our data arose, it seems to me we ought to assign these hypotheses

roughly equal prior weight. Hence, upon conditionalizing on our data, the

hypothesis we ought to now think most likely was that life and the universe

17

P (Fair|42) =
P (42|fair) · P (Fair)

P (42|Fair) · P (Fair) + P (42|Only 42) · P (Only 42)

=
(1/1 quintillion) · (1/(1 quintillion + 1))

(1/1 quintillion) · (1/(1 quintillion + 1)) + 1 · (1/(1 quintillion + 1))

=
1

1 quintillion + 1

⇒ P (Only 42|42) =
1 quintillion

1 quintillion + 1
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were very likely or inevitable. And, given that, it seems to me we ought to

head into the laboratory, to try to figure out exactly why that should be.

All of this, recall, is presuming that agential intervention is off the table

– that we’re saddled with the prejudice that the universe and our tectonic die

are the result of blind physical forces. Blind physical forces, the point is, are

just as likely to produce a fair die as they are to produce one loaded in some

particular way.

There is a more sophisticated way of putting this point, which I will

rehearse for the aficionados in the audience: Every version of the fine tuning

argument that I have seen assumes the standard measure over the parameter

space. The standard measure is roughly the continuous equivalent of a uni-

form distribution over the faces of our die. My point is that our scant evidence

about the origins of the universe cannot justify high confidence that the stan-

dard measure accurately describes the parameter space. For a priori – that is,

in the absence of any data – it seems equally likely that the parameter space

is described by a measure which makes the observed parameter value likely or

inevitable, and the latter hypothesis is massively confirmed by a single data

point. Now, if we had access to 1-billion universes, and if their observed pa-

rameter values were not clustered in any obvious way – if they seemed, in some

sense, uniformly drawn from the Real line – that would I think justify some

confidence that the parameter space is accurately described by the standard

measure. But we do not have access to 1-billion universes. A full defense of

this point, however, will have to wait for another time. For now it’s enough

to point out that White’s conclusion – that we should be content to see life

and the universe as a happy accident – only follows on the strong claim that

we should be antecedently confident that the standard measure is the true
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measure on the parameter space, or that the chance hypothesis is true, and

White has given us no reason to believe that.

Here then, is a cautionary note: often when we’re thinking about chance

hypotheses and Bayesianism, we rely heavily on standard examples of chance

mechanisms: dice, cards, urns, roulette wheels, lotteries, tornadoes, etc. But

the problem with the use of these examples is that, when you confront them in

a thought experiment, you do so with certain presuppositions. If I asked you to

imagine a die, for example, and asked how many times in a row it would have

to come up six before you’d be convinced it was loaded, the answer I imagine

would be fairly large. Certainly, if the die came up six once, that wouldn’t be

enough. But all this reveals is that you presuppose, in the thought experiment,

that the chance hypothesis – that the die is fair – is true. This is not unrea-

sonable, of course, because you’ve presumably had a lot of experience with

dice, and dice-like physical objects, and those experiences justify confidence

in how those objects will behave. But that is not the case when we consider

the molecular origins of life, and it is certainly not the case when we consider

the conditions under which the universe arose. We do not have any evidence

or experience which would justify an antecedently high confidence that a cer-

tain chance explanation accurately describes these processes. Given that, the

standard examples of chance mechanisms are unhelpful as analogies, and are

in fact distorting. We should not respond to a self-replicating molecule, or to

a fine-tuned universe, the same way we should respond to the outcome of a

single roll of a die, or a single spin of a roulette wheel, etc.18

I think that White himself makes this mistake. He imagines, as anal-

ogous to the origins of life and the universe, confronting a massive lottery,

18This point was made clear to me by Sahotra Sarkar, in conversation.
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which selects ticket #48579387593478. And he writes,

No matter how confident or doubtful we are initially that the lot-

tery is fair in that tickets are selected purely by chance, ticket

#48579387593478’s being selected gives us no reason at all to doubt

this. Any investigation into the lottery mechanism that was moti-

vated by the fact that ticket #48579387593478 was selected would

be misguided. (468)

That sounds plausible, but I contend its plausibility derives precisely from the

distortion described above. If you are a Bayesian, and prior to witnessing any

data, you took the chance hypothesis to be just as likely as the hypothesis

that the lottery is biased in favor of any particular ticket, then you should

now think it overwhelmingly likely that the lottery was biased in favor of

ticket #48579387593478. And thus an investigation into the lottery mecha-

nism – in an attempt to explain why the lottery is biased in favor of ticket

#48579387593478 – would not be misguided.

1.9 Summary

Allow me to sum up White’s argument, and my case against it, before

considering objections.

White argues that because blind forces of nature are as likely to be

biased in favor of life as they are to be biased in favor of any particular outcome,

our data is equally unlikely under the hypothesis that it resulted from chance,

and under the hypothesis that it resulted from those blind physical forces. It

follows from this that our data does not disconfirm the chance hypothesis.

White concludes that therefore “we should be quite content to ... see[] life as

an extremely improbable ‘happy accident.’ ”
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I have raised two objections to this argument. First, I have argued

that it is not at all clear that our data is equally likely under the chance

and blind physical forces hypotheses. We can only know this if we specify a

chance hypothesis, and then argue that it assigns a lesser probability to our

data than the hypothesis of unknown bias. Importantly, it does not follow

simply from the fact that the hypothesis of unknown bias is the hypothesis of

unknown bias that therefore it assigns the same probability to our data as the

chance hypothesis. Furthermore, I’ve offered what I think is a plausible toy

probabilistic model of the origins of life, according to which our data would not

be equally likely under the chance hypothesis, and the hypothesis of unknown

bias.

Second, I have argued that, even if we grant that the chance hypothesis

is not disconfirmed by our data, it simply does not follow that we should think,

upon witnessing our data, that that hypothesis is likely to be true, nor does it

follow that we should be ‘quite content’ to endorse it. While our data may not

give us any reason to doubt the chance hypothesis, it may nevertheless give

us a (very) strong reason to believe some alternative to the chance hypothesis

is true. This alternative could simply be, for example, that our data were

likely or inevitable. And if, antecedently, we thought the chance and the ‘it

was inevitable’ hypotheses roughly equally likely – as it seems we should if

we are uncertain about the conditions under which our data arose – then we

should now take the most likely hypothesis to be that our data were inevitable.

The task of the scientist, then, would be to explain why it is that our data –

complex molecules, or cosmic parameters, or amplified rates of heart disease

– was inevitable.
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1.10 Objections and Replies

1.10.1 Objection 1

White argues that, in the absence of an available explanation of our

data we should be content to endorse the hypothesis that the data improbably

arose by chance. But in your reply to White, you rely heavily on the hypothesis

‘the data were likely or inevitable,’ which itself looks like a sort of explanation.

So isn’t your reply irrelevant, because White is explicit in his argument that

no alternative explanations are available?19

1.10.1.1 Reply

It is true that I rely on the hypothesis ‘the data were likely or in-

evitable,’ but I do not think this a problem. Were White to pursue this

objection, he would face a dilemma. If his argument only applies when the

hypothesis ‘the data were likely or inevitable’ is not an available hypothesis,

then his argument is irrelevant with respect to the question of the origins of

life and of the universe, because it clearly is possible that life (and the uni-

verse) were likely or inevitable. So White would either have to admit that

that alternative is available – in which case he confronts my reply – or he has

to contend that his argument is purely academic, and in fact irrelevant to the

interesting question of how we should respond to the fact that life and the

universe are improbable outcomes under the chance hypothesis.

19Thanks to a comment from an anonymous reviewer which inspired this objection.
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1.10.2 Objection 2

You are reading White uncharitably. White’s only goal was to argue

that, when considering the origins of life, life’s improbability is not, in itself,

a reason to doubt the chance hypothesis. Thus it is consistent with White’s

argument that the chance hypothesis is disconfirmed by life’s existence, as

long as it is disconfirmed for a reason which is not the one White is objecting

to. Thus the first objection – the conclusion of which is that, in the case of

the origins of life, the chance hypothesis is disconfirmed – is consistent with

White’s argument. Furthermore, it is also perfectly consistent with White’s

argument that the chance hypothesis, in both your prior and posterior, is

extremely unlikely. So the second objection offered in the above misses the

mark as well.20

1.10.2.1 Reply

I do take White to be offering a positive argument that in fact the

chance hypothesis is not disconfirmed by our data. One bit of circumstantial

evidence is simply the length of his paper; that improbability does not entail

disconfirmation is a point which could easily be made in a page or two. (I

make it in a short paragraph in section 2.) But more than that, White seems

to me quite explicit about this in his paper; upon finishing his argument, he

writes:

Where does this leave us? If life’s existence is no more to be ex-

pected on the assumptions of either intentional or non-intentional

biasing than it is on chance, then we have no reason to doubt the

20Thanks to an anonymous reviewer for this objection.
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Chance hypothesis. I have been arguing that while there is at least

room to argue that life is more to be expected given that an agent

was involved, it is very hard to see why we should find life’s exis-

tence any more likely at all on the assumption that non-intentional

biasing factors were involved. So unless we suspect that life arose

on purpose, we should be quite content to join Crick in seeing life

as an extremely improbable ‘happy accident’ (White, 2007, 467).

Now, we might try to read White as merely arguing that the chance

hypothesis is not disconfirmed by the data. In which case, while my first

objection would be on target, my second objection – that, granting the chance

hypothesis is not disconfirmed, the chance hypothesis could nevertheless be

very unlikely in your posterior – would miss the mark, because it would be

consistent with White’s overall argument.

But again, I think there is pretty compelling evidence that White

wants to conclude something stronger – namely, that in light of the fact that

the chance hypothesis is not disconfirmed, we should think it plausibly true.

White’s motivating question is “why, if appeals to intelligent agency are not

on the table, we should be so reluctant to attribute the origin of life largely

to chance?” (White, 2007, 454). He wonders why “the vast majority of re-

searchers in the field agree with Dawkins that we cannot credibly suppose that

life arose by spontaneous random generation if the chance of this happening

was extremely small?” (White, 2007, 460). He takes the upshot of his argu-

ment, as just noted, to be that we should be “quite content to join Crick in

seeing life as an extremely improbable “happy accident”” (White, 2007, 467).

He claims that the reasoning of researchers is “misguided” because “while

making no appeal to intentional agency, [they] are persuaded that [life] was

not the result of chance, and are motivated to find a non-intentional explana-
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tion.” (White, 2007, 470) He claims that he will “raise doubts” about how the

following two claims can “hang together” (White, 2007, 453):

(3) “The conviction that life did not arise largely by chance is treated as

epistemically prior to the development of alternative theories” (White,

2007, 453).

(4) “The suggestion that the origin of life might be due to any kind of

purposeful agency is not considered as a serious option” (White, 2007,

454).

My point – that given our lack of access to the conditions under which

our data arose, chance and bias hypotheses could and probably should be on

equal footing in your priors, and hence should be given very little prior weight

– answers the question of how these last two claims can hang together, even if

the chance hypothesis is not disconfirmed by the data. Because it is reasonable

to assign a low prior to the chance hypothesis, you should now be convinced,

in your posterior, that life did not arise by chance. This would explain why

the vast majority of researchers agree with Dawkins, why they aren’t content

to join Crick, why they are persuaded that life was not the result of chance,

and why they are motivated to find a non-intentional explanation.

Finally, even if my reading of White is incorrect, and his intention was

only to point out that improbability does not suffice for disconfirmation, or

to argue that the chance hypothesis is not disconfirmed by the data, there

would remain an interesting question: granting the chance hypothesis is not

disconfirmed by their data, should scientists be motivated to search for an

alternative-to-chance explanation of the origins of life and the universe? And

here I’ve given an answer: yes, under plausible probabilistic models of their
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epistemic situation, and even if the chance hypothesis is not disconfirmed, the

hypothesis that researchers should now think most likely is that their data

were likely or inevitable, and hence they should be motivated to account for

why that should be.

1.10.3 Objection 3

In the discussion of the tectonic coin of unknown bias, you point out

that double heads would disconfirm the chance hypothesis, because double

heads is more likely if the coin is tectonic than it is if the coin is fair. But

White argues directly, in the case of the origins of life, that our evidence is

equally likely under both chance and non-intentional bias hypotheses. Hence

the case of the tectonic coin – which produces two heads – is not relevant to

White’s argument, because it’s not a case where the evidence is equally likely

under chance and bias hypotheses.21

1.10.3.1 Reply

White’s reason for thinking that our evidence is equally likely under

the chance and non-intentional bias hypotheses is that blind physical forces are

just as likely to be biased in favor of life as they are to be biased in favor of any

outcome. This is also true of the tectonic coin – it is equally likely to be biased

in favor of as against heads. So the tectonic coin is relevant because it reveals

that you can observe a random process, which is as likely to be biased in favor

of as against any particular elementary outcome, and yet receive evidence

that is not equally likely under the chance and bias hypotheses. Thus my

21Thanks again to an anonymous reviewer for this objection.
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point, with the tectonic coin, is simply that White draws an illicit inference:

it does not follow from the fact that non-intentional bias is as likely to favor

life as to disfavor it that our evidence is equally likely under the chance and

non-intentional bias hypotheses. More is required.

Recall, also, our 1,000 paper bags full of the non-self-replicating stuff

of early Earth. Suppose upon shaking them up, every single one yielded a self

replicator. Suppose 1 million or 1 billion such bags produced self replicators.

Or consider our San Diegans again; suppose the rate of heart disease in San

Diego was 100 percent – that is, every San Diegan had heart disease. If

White’s inference here were successful – that is, if it followed that because

blind physical forces are as likely to be biased in favor of, as against, an

outcome, that therefore whatever evidence we receive is equally likely under

the chance and non-intentional bias hypotheses – then no data stream could

call the chance hypothesis into question (unless we are willing to attribute that

data stream to an intentional agent).

That strikes me as absurd. I am right now fairly confident that heart

disease in San Diego is distributed via the same chance mechanisms which

distribute heart disease in the general population. But if tomorrow I learned

that the rate of heart disease in San Diego was 100 percent, I would not retain

that confidence. And importantly we can build plausible Bayesian models of

the idea that blind physical forces are, antecedently, as likely to be biased in

favor as against heart disease in San Diego which impose no such commitment.
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Chapter 2

Probably Not that Improbable: On inverse

probabilities and the problem of the priors

2.1 Introduction

You go to the doctor. She tests you for a disease. The true positive

and negative rates of the test you undergo are both 95 percent; i.e.,1

P (+|D) = .95

P (−|¬D) = .95.

You test positive. How confident should you be that you are afflicted?

My students would respond that there is not enough information. To

answer the question, they would need to know the base rate. If the disease is

rare, then it’s unlikely you are afflicted. But if it’s common, then you should

worry.

But here is a puzzle. What if you, the doctor, and everyone else, have

no idea what is the base rate? What if your ignorance is so acute that you

cannot place non-trivial upper and lower bounds on what it might be? It is

possible everyone has the disease, or that no one does. In fact, for every rate

r, it’s possible the base rate is r. What then is the rational response to a

1Here ‘D’ is the proposition you have the disease, ‘+’ the proposition that you test
positive, and ‘-’ the proposition that you test negative.

30



positive result? This question might seem obtuse, because we are never so

entirely ignorant. But first that’s not so clear. And second the question I’m

really asking is ‘how does empirical inquiry begin, given that it must ultimately

begin from a state of empirical ignorance?’

The entirety of statistics and scientific inference hangs on this question.

The specific example is not important. I have in mind an idealized picture

of the scientific enterprise. We confront a universe of random mechanisms.

Those mechanisms distribute disease, or inherited traits, or economic gains

and losses. And our goal is to understand the probability distributions which

govern them. But there is always a first step: a first piece of data, a first

positive result. And it is only if we know how to take the first step that we

will be able to take the rest of them.

This, then, is a paper in the foundations of statistics. It is a defense of

a classical outlook much like the one defended by R.A. Fisher in the middle of

the last century. But I am not obsequious; I argue here that Fisher got a lot

wrong.

In the philosophical circles I run in, Bayesianism is ascendant. But

while the Bayesian apparatus is elegant and powerful, I can’t make sense of it.

This, for familiar reasons: Bertrand’s paradox, and the problem of the priors

more generally. The other main alternative – besides Bayesianism and classi-

cism, that is – is likelihoodism. But, though the central claim of likelihoodism

is right, likelihoodism is too austere. It seems to me unable to do the work

that I had hoped statistics could do.

This paper proceeds in two parts. The first is destructive. I argue that

each of the views mentioned fails to solve our motivating puzzle. The second

is constructive; it is devoted to solving it.
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2.2 Destruction

2.2.1 Bayesianism

Everyone wants to be a Bayesian. For Bayesians, uncertainty always

manifests itself in a probability distribution. If you are ignorant of the base

rate, there is a probability distribution which expresses or captures that igno-

rance. But the difficult question is: which distribution?

In answering that question, Bayes considered, and Laplace championed,

the Principle of Indifference: evidential parity implies equiprobability. If you

are ignorant of the base rate, then you have as much evidence that you are

afflicted as that you are not. Hence, before taking the test, the probability

that you had the disease must have been 1/2.

But there are damning, perennial, recalcitrant objections to that thought.

Suppose that the disease you will be tested for is one of a set of one hundred

mutually exclusive diseases. And you are ignorant of each of their base rates.

Then for any disease, you have as much evidence you are afflicted as that

you are not. (You have exactly zero evidence, either way.) Thus, if evidential

parity implies equiprobability, the probability you have each particular disease

must be 1/2. Hence the probability that you have at least one of the diseases

is given by

P (You have the first disease) + P (You have the second) + . . .

+ P (You have the hundredth)

= 1/2 + 1/2 + . . .+ 1/2

= 50

But 50 is not a probability. Probabilities are less than one. The Principle of

Indifference entails a contradiction.
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Now, Bayesians have thought about this problem. One response is

the following. You should only consider the finest available partition of the

possibility space. So, if there are 100 exclusive diseases (and you know you have

one of them), then according to the Principle of Indifference, the probability

you have any particular one is 1
100

.

But, first, why? Evidential parity is evidential parity. If evidential

parity implies equiprobability, it ought to regardless of the chosen partition.2

Second, suppose we grant that we should only consider the finest available

partition of the possibility space. Returning to our disease with mystery base

rate, that rate might take any real value between zero and one. Hence the

finest partition is infinitely fine; it contains a cell for every possible rate r.

Presumably, the Principle of Indifference recommends a uniform density over

that partition.3 But this doesn’t help. It makes things worse; the problem

transforms into Bertrand’s paradox.

According to the uniform density, the probability is 1/2 that the base

rate is less than 1/2. But a uniform density over the base rate entails a

nonuniform density over the squared base rate. It entails that the probability

is greater than 1/2 that the squared rate is less than 1/2.4 But why should

this be? What justifies confidence, in ignorance, that the squared rate is less

than 1/2? More importantly, why assign a uniform density over the rate, but

not over the squared rate? After all, we have exactly as much evidence that

2Many people object at this point. Surely Laplace did not intend that wherever you have
evidential parity you have equiprobability. Fair enough. You can see this as an invitation
to specify exactly what the Principle of Indifference is such that it avoids this consequence.

3According to the uniform density it is equally probable that r is in the interval (a, b)
and in (c, d) just when (a, b) and (c, d) are of the same length.

4P (r2 ≤ 1
2 ) = P (r ≤ 1√

2
) > P (r ≤ 1

2 ) because 1√
2
> 1

2 .
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the squared rate is less than 1/2 as we do that the rate is. A similar problem

arises for the cubed rate, the quadrupled rate, the square root of the rate, etc.5

Now, Harold Jeffreys and Edwin Jaynes did offer (what they took to be)

a solution to this problem. But that solution requires adopting an unbounded

or improper distribution as your prior. The sum (technically, integral) of the

probabilities of each rate hypothesis is infinite.6 But an unbounded distri-

bution is not a probability distribution. Probabilities are bounded; they are

always less than one.

Other Bayesians have taken another tack. On their view, Bertrand’s

paradox reveals only that there is no objective starting point in inductive

inference. Instead, they contend, “the prior distribution from which a Bayesian

analysis proceeds reflects a person’s beliefs before the experimental results are

5Bas van Fraassen made this problem famous in the philosophical community with his
cube factory example (van Fraassen, 1989, 302-307). The problem was originally noticed by
Bertrand (1889).

6Jaynes recommends (Jaynes, 1968, 20) and Jeffreys considers (Jeffreys, 1961, 123-125)

f(p) ∝ 1

p(1− p)

as the prior representative of “total confusion or complete ignorance” (Jaynes, 1968, 20)
when an unknown parameter p is restricted to lie between 0 and 1. But the integral of that
function does not converge. (Because the integral of 1

p diverges over (0, 1), and because

0 ≤ 1
p ≤

1
p(1−p) over (0, 1), the integral of 1

p(1−p) must also diverge over that interval.)

Jeffreys attributes the view that f(p) is appropriate to J.B.S. Haldane (Jeffreys, 1961,
123), but notes that, for example, were the first two people we investigated to have a disease
with unknown base rate, our posterior credence that the population wide rate is 1 would be
1. In other words, we would be certain that everyone has the disease. Jeffreys writes, “The
rule 1

p(1−p) ... would lead to the conclusion that if a sample is of one type with respect to

some property, there is probability 1 that the whole population is of that type”(Jeffreys,
1961, 124). After considering some alternatives, and also finding them wanting, Jeffreys
ultimately concludes “we may as well use the uniform distribution ... in the present state
of knowledge, that is enough to be going on with”(Jeffreys, 1961, 125). This is just to say
that Jeffreys ultimately does not offer a solution to the version of Bertrand’s paradox I’ve
presented here.
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known. Those beliefs are subjective, in the sense that they are shaped in part

by elusive, idiosyncratic influences, so they are likely to vary from person to

person.” And “trying to force this ... entirely legitimate diversity of opinions

into a single uniform one is misguided Procrusteanism.”(Howson & Urbach,

2006, 237)

But I do not think this helps with Bertrand’s paradox. The problem

is not an interpersonal problem. The problem is not that some people want

to place a uniform density on the rate, while others want to place a uniform

density on the squared rate. The problem is intra-personal. When I ask myself,

‘should I adopt a uniform density on the rate, or on the squared rate?’ the

“elusive, idiosyncratic influences” on my beliefs which are supposed to choose

between them do not yield a verdict. Both seem to equally well reflect my

evidential station. But I cannot adopt them both; they are inconsistent.

In sum, the question of how to represent ignorance in the Bayesian

framework is a vexed one. And I know of no satisfying answer to it. These are

not new points; this is just the problem of the priors, the problem that made

the Reverend Bayes himself reluctant to be a Bayesian.7

7Fisher, at least, thought so

Bayes’ introduction of an expression representing probability a priori con-

tained an arbitrary element, and it was doubtless some consciousness of this

that led to his hesitation in putting his work forward. (Fisher, 1956, 17)
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2.2.2 Likelihoodism

I turn then to likelihoodism. Likelihoodists8 abandon the central Bayesian

dogma. Some evidential states – for example, empirical ignorance – cannot be

captured by a probability distribution. Sometimes no prior is available.

But to give up priors comes at a cost. Bayesianism allows us to model

the acquisition of evidence via Bayes’ Theorem. We can condition on our

evidence and arrive at posterior probabilities. Thus, we can say how probable

it is you have a disease, if you test positive for it in ignorance of the base rate.

But the machinery of Bayes’ Theorem runs on a prior; it cannot get started if

you do not supply one.

Likelihoodists accept this. And they conclude that because we some-

times lack priors, we cannot in those cases locate posterior probabilities. Here

is Edwards, accepting that consequence with relish

It is indeed true that [likelihoodism] . . . does not make any assertion

about the probability of a hypothesis being correct [in light of the

data]. And for good reason: the [view] has been developed by

people who explicitly deny that any such statement is generally

meaningful in the context of a statistical hypothesis. (Edwards,

1972, 33)

So consider again our disease with mystery base rate. The likelihoodist

accepts the upshot of Bertrand’s paradox. To settle on a uniform density on

the base rate, instead of on the squared base rate, would be arbitrary. But

without a prior, we cannot arrive at posterior probabilities. And hence we

8like Hacking (Hacking (1965)), Edwards (Edwards (1972)), and Sober (Sober (2008))
(in certain moods).
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cannot answer the question of how probable it is you have the disease, upon

testing positive. The best we can do is consider the relative likelihoods of this

or that hypothesis – i.e., the relative probabilities of our data given this or

that hypothesis. So the hypothesis that you are afflicted is best, if you test

positive, because given you are afflicted, the probability of a positive test is

higher than given you are not. But to say that hypothesis is best is not to say

you should be confident it’s true, nor is it to say that it’s probably true.

My main complaint about likelihoodism is not that it’s wrong but that

it’s too austere. Of course we can rank hypotheses by the probabilities each

assigns to our observed data. But I don’t think that’s the question we were

interested in.

Imagine, for example, you test yourself for the disease with mystery

base rate one million times. Assume, again, true positive and negative rates

of 95 percent. Now suppose that nine hundred and fifty thousand of those

one million tests are positive. Rationality requires, it seems to me, that you

be confident that you have the disease. It requires that you think it highly

probable that you have the disease. But likelihoodism does not deliver this

result. The likelihoodist will agree that the hypothesis that you are afflicted is

best. (After all, that hypothesis assigns the highest probability to your data.)

But without a prior, likelihoodism “does not make any assertion about the

probability” that you are afflicted. Thus even after nine hundred and fifty

thousand positive tests, it is silent on the question of whether you should be

confident you have the disease.

Of course, Likelihoodism could be amended. We could insist on certain

thresholds – after 100 positive tests, be confident you are afflicted. But those

thresholds and their justification need explication. Until that’s supplied, the
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view looks too thin.9

2.2.3 Classicism

I turn now to the classicists, typically represented by the trio of Ronald

Fisher, Jerzy Neyman and Egon Pearson.

In philosophical circles, classical statisticians get a bad rap. Howson

and Urbach, for example, claim that classical significance tests yield conclu-

sions which “often flatly contradict those which an impartial scientist or ordi-

nary observer would draw.”(Howson & Urbach, 2006, 154).

The classicists did make mistakes,10 but they are often read unchari-

tably. They were aware of the problem of the priors for Bayesianism.11 And

they were aware that we could interpret evidence via likelihoods.12 Given that,

9This is, in essence, the critique of likelihoodism, pressed convincingly and thoroughly,
by Greg Gandenberger. Gandenberger (2016)

10Interested readers are referred to Sober, Chapter 1, and Howson and Urbach, Chapter
5.

11About Bayesianism, Fisher wrote

Certainly cases can be found, or constructed, in which valid probabilities a

priori exist, and can be deduced from the data. More frequently, however,

and especially when the probabilities of contrasted scientific theories are in

question, a candid examination of the data at the disposal of the scientist

shows that nothing of the kind can be claimed. (Fisher, 1956, 17)

12In certain places, Fisher seemed to explicitly endorse Likelihoodism:

Although some uncertain inferences can be rigorously expressed in terms of

mathematical probability, it does not follow that mathematical probability is

an adequate concept for the rigorous expression of uncertain inferences of every

kind. . . . More generally, a mathematical quantity of a different kind, which I

have termed mathematical likelihood, appears to take [the place of probability]

as a measure of rational belief. (Fisher 1935, 474, quoted in Lehmann 1993)
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I think we should read them as trying to push likelihoodism further than its

austere beginnings. They wanted to see how far they could get without hav-

ing to invoke prior probabilities. Now perhaps they didn’t get very far, but

at least some of the criticisms leveled at classical methods fall flat when those

methods are viewed in that light.

So what is classicism? I want to abstract away from the details as much

as possible. But consider again our disease with mystery base rate, and our

test, whose true positive and negative rates are both 95%:

P (+|D) = .95

P (−|¬D) = .95

Here is a general fact that the classicists noticed. Let the unknown base rate

be r, and ask: supposing you are about to take the test, how probable is it

that you will get an accurate result? It’s surprising, but that question has a

fixed and knowable answer, even though the base rate is unknown. For the

test is accurate just in case you test positive, and have the disease, or test

negative and lack it. And the chance of that is given by

P ((+ ∧D) ∨ (− ∧ ¬D)) = P ((+ ∧D)) + P (− ∧ ¬D)

= P (+|D)P (D)

+ P (−|¬D)P (¬D)

= .95× r + .95× (1− r)

= .95

Thus, you do not know how probable it is that a positive test will be accurate.

And you do not know how probable it is that a negative test will be accurate.
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But you do know, in general, how probable it is that you will receive an

accurate result. Roughly put, if one billion people took the test, and everyone

trusted her result, 95 percent of them would be right. And this is true, again,

no matter what the base rate is. The point is sometimes put this way: we can

know the pre-data (or pre-result) probability that your test will be accurate,

even though we do not know the post-data (or post-result) probability that it

was.

Now, at this point, a rift opens up between our principals. Fisher stands

on one side of it, and Neyman and Pearson stand on the other. Allow me to

describe their views and my misgivings about each in turn.

2.2.3.1 Fisher

I begin with Fisher. As I read Fisher, he wanted to simply pivot on the

accuracy of the test and adopt it as a posterior credence. If, in other words,

you test positive, Fisher thought you should be 95 percent confident that you

have the disease. And he seemed to argue for this as follows: we have no

idea what the base rate is. But we do know that the test will be accurate 95

percent of the time. And in ignorance, it seems rational to fall back on the fact

that 95 percent of tests are accurate – to use that to determine our posterior

credences.

Consider, Fisher might offer, an analogy. Suppose you select Bob at

random from a group of people, 95 percent of whom have a heart condition.

You are thus 95 percent confident that Bob has a heart condition. But you

then learn that Bob is from San Diego. In light of that information, how

confident should you be that Bob has a heart condition? Should you, in other

words, revise your credences?
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It’s less obvious, but a base rate problem arises here. To know the

probability that Bob has a heart condition, it seems you need to know the rate

of that heart condition among San Diegans. Or at least, you need to know

the rate among the San Diegans in the group from which Bob was selected. If

they all have it, the probability Bob does is one. If half have it, the probability

Bob does is one half. That said, in ignorance of the proportion of San Diegans

who are afflicted, it seems reasonable to fall back. It seems reasonable to let

the fact that Bob was selected from a group of people – 95 percent of whom

are afflicted – guide and determine your credences.

Fisher wanted to say the same thing about accuracy and our test results.

We know that 95 percent of results are accurate. It’s true that we do not know

what proportion of the positive tests are accurate. But, in ignorance, it seems

perfectly reasonable to fall back, and let the 95 percent accuracy of the test

guide and determine our credences. Hence, if you test positive in ignorance of

the base rate, you ought be 95% confident you have the disease. 13

Fisher’s view is under-appreciated. He is offering us a middle ground

13This is, I think, the easiest way to understand Fisher’s fiducial argument. He noticed
that, in certain circumstances, we could make general probability statements which are true
regardless of prior probability distributions. He considers, for example, a random variable X
which follows an exponential distribution with rate parameter θ, and notes that the quantity
2θX will follow a χ2 distribution regardless of the value of θ. From that, it follows that, if

χ2(P ) is the P -th percentile of a χ2 distribution, θ will exceed χ2

X with probability P .
He then writes,

The probability statement [– that θ will exceed χ2

X with probability P –] had

as a reference set all the values of X which might have occurred in unse-

lected samples for a particular value of θ. It has, however, been proved for

all values of θ, and so is applicable to the enlarged reference set of all pairs of

values (X, θ) obtained from all values of θ. The particular pairs of values

θ and X appropriate to a particular experimenter certainly belongs

to this enlarged set, and within this set the proportion of cases satisfying
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in the debate between likelihoodists and Bayesians. We can agree with the

likelihoodist that the problem of the priors is fatal to Bayesianism. But at

the same time, we can deny the likelihoodists’ pessimistic conclusion – that

posterior probabilities are out of reach. In fact, we can locate and endorse

posterior probabilities. We need only find tests which are accurate with a

known probability. And our posterior credences can then be guided by the

accuracy of those tests.

Now, some authors have claimed that this doesn’t really count as

progress. Fisher is implicitly invoking a prior, they contend, even if he is

unwilling to admit it. (Edwards (1972, 208-209) and Bulmer (1967, 179) both

the inequality

θ >
χ2(P )

X

... is certainly equal to the chosen probability P . (Emphasis added.) (Fisher,

1956, 54)

The comment I emphasized above is, I think, crucial. When Fisher refers to the pairs of
values “appropriate to a particular experimenter”, he just means that the general probability
statement is true regardless of the experimenter’s prior. In other words, no matter what

your prior over θ is, before the data X comes in, you should think that θ will exceed χ2(P )
X

with probability P .
Fisher then goes on to write,

It might have been true ... that in some recognizable subset of pairs (X, θ)

... the proportion of cases in which θ exceeds χ2(P )
X should have had some

value other than P . It is the stipulated absence of knowledge a priori of the

distribution of θ ... that makes the recognition of any such subset impossible,

and so guarantees that in [the experimenter’s] particular case ... the general

probability is applicable. (Fisher, 1956, 55)

Here, Fisher is just saying that if you knew the appropriate prior probability distribution
to adopt over θ, you might, upon observing your data, have reason to abandon the general
probability statements, which you recognized as true before the data came in. But, he
contends, our ignorance somehow “guarantees” that the general probability statement must
remain applicable, after you see the data.
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raise versions of this criticism.) After all, if the posterior probability that you

have the disease is .95, after a positive test, then the prior probability must

have been 1/2.14

But while that’s right, it’s hard for me to see how this amounts to

much of a criticism of Fisher. The whole problem with the Bayesian approach

is that it is impossible to locate a prior probability. At worst, then, Fisher

has supplied us with a method by which we can locate a rational prior. We

can say, ‘the reason this prior is reasonable is that, in using it, our credences

will be guided by the objective accuracy of our tests. That is why you should

adopt a prior of 1/2 in this case; it has nothing to do with evidential parity.’

And that, I think, would count as progress.

There is, however, a more difficult problem for Fisher’s view. And

14

P (D|+) = .95

=
P (+|D) · P (D)

P (+)
(Bayes’ Theorem)

=
.95P (D)

P (+|D) · P (D) + P (+|¬D) · P (¬D)

=
.95P (D)

.95 · P (D) + .05 · (1− P (D))

=
.95P (D)

.9P (D) + .05

Hence

.95 =
.95P (D)

.9P (D) + .05

.9P (D) + .05 = P (D)

.05 = .1P (D)

P (D) = .5
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here’s a trivial way to see it. Suppose you have a fair coin. On one side of it,

you write ‘you have the disease’. On the other, you write, ‘you don’t.’ Then,

by the considerations above, it seems you ought to reason as follows. You

know that that coin will give you an accurate report 50 percent of the time,

whether you have the disease or not. So if you flip it, and it says you have the

disease, on Fisher’s view you ought to adopt a posterior credence of 1/2 that

you do. (Same goes, I suppose, if it says you don’t have the disease.)

At first blush, maybe that doesn’t seem so bad. It looks like an appli-

cation of the Principle of Indifference. But now imagine you also have a fair

three-sided die. On one side, you write ‘you have the disease’, on another,

you write ‘you don’t and it will rain tomorrow’, and on the third, you write

‘you don’t and it won’t rain tomorrow.’ (Assume you are ignorant both about

the climate, and about whether you have the disease.) You roll the die, and

it reads ‘you have the disease.’ Well, again, regardless of what the truth is,

you know the die will report that truth with probability 1/3. And so, by the

considerations above, it seems you ought to adopt a posterior credence of 1/3

that you are afflicted.

And the problem is that neither the coin nor the die gives you any

evidence. So imagine one person flips the coin and reads ‘you are afflicted’,

and another rolls the die and reads the same. Oddly, on Fisher’s view, the

coin flipper should be more confident that she is afflicted than the die roller.15

15And we can make this worse. Imagine a fair million-sided die. And suppose you have
a random number generator which generates whole numbers between 1 and 999,999. On
one side of the die, you write, ‘you have the disease,’ on another you write, ‘you don’t, and
this random number generator will generate 1’, on another you write, ‘you don’t, and this
random number generator will generate 2’, etc. Well then that die will again be accurate
once every million rolls. And so, if the die says ‘you have the disease’, on Fisher’s picture
your posterior credence that you do ought to be one in one million. But again, the die
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If we do allow our credences to be determined by these mechanisms,

problems will percolate into our epistemic futures. Suppose I flip the coin,

and arrive at a 1/2 credence I have the disease. You roll the die, and arrive

at a 1/3 credence you do. Suppose we then both conditionalize on the same

evidence – a collection of positive tests, say. Then we will arrive at different

conclusions about the probability we are afflicted.

Thus the problem of the priors re-arises for Fisher. We don’t actually

need to construct these coins and dice, and see how they behave. We already

know that they will provide no further evidence than we already have. And

so, if we were to let them guide our credences, we would need to arbitrarily

choose a starting point.

supplies no evidence one way or another. So if you weren’t already, you should not become
99.9999% confident that you do not have the disease, if and just because that million sided
die reported you do.

16Sophisticates might try to save Fisher by saying something like the following: if you read
Fisher, you will find that his whole view rested on the notion of a pivotal quantity. A pivotal
quantity, recall, is a function of the possible data and hypotheses which is independent of
which hypothesis is true. If, for example, X is a normally distributed random variable with
unit variance and with hypothesized but unknown mean µ, then (X−µ) is a pivotal quantity
– the probability that it takes any particular value is independent of the value of µ.

And the sophisticate will rightly point out that I have not said anything about pivotal
quantities here. But, in fact I have been discussing pivotal quantities, just not by that name.
Consider again our fair coin; on one side of it, it says ‘you have the disease’, on the other,
it says ‘you do not.’ And now consider the proposition the coin reports the truth. That
proposition is a function of the possible data – what the coin reports – and the hypotheses
– whether or not you have the disease, into the set {True,False}. And the probability
that that function takes the value True is 1/2, regardless of whether or not you have the
disease. Hence that proposition is a pivotal quantity, and hence on Fisher’s view you ought
to pivot on it, and use it to arrive at posterior probabilities.
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2.2.3.2 Neyman and Pearson

I turn, lastly, to Neyman and Pearson. Like Fisher, Neyman and Pear-

son were impressed that we can know the pre-result probability that a test will

be accurate, though we do not know the post-result probability that it was.

But they were less committal than Fisher about the upshot of that fact.

If Fisher is like a Bayesian, then Neyman and Pearson are like the

likelihoodists. They thought that in ignorance of the prior, we should give up

on posterior probabilities. Instead, they contended, we should focus on “rules

of behavior” that we will follow upon observing our data. “Without hoping

to know whether each separate hypothesis is true or false,” they wrote, “we

may search for rules to govern our behavior with regard to them, in following

which we insure that, in the long run of experience, we shall not too often be

wrong.”(Neyman & Pearson, 1933, 291)

One rule of behavior, for example, is the following. If you confront a

positive test, accept that you have the disease. Otherwise accept that you do

not. (Let us, along with Neyman and Pearson, leave the notion of ‘acceptance’

vague.) If you follow that rule, then when you take our test for the disease

with mystery base rate, there is a 95% chance that you will accept the truth

on any given occasion.

But for Neyman and Pearson, the probability of a hypothesis is always

relativized to a rule of behavior. You cannot say categorically, as Fisher or

the Bayesians wanted to, ‘the probability I have this disease is 95 percent.’

For there are often many rules available to you. And there is no fact of the

matter about which rule you are following on a particular occasion. Here, for

example, are two rules you might follow upon confronting a positive test:
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1. Accept that you have the disease only if you test positive, otherwise,

accept that you do not have the disease.

2. Accept that you have the disease regardless of your test result.

Notice that to follow each of these rules is to accept that you have the disease,

given you’ve tested positive. But while following the first will lead you to

accept the truth 95 percent of the time, following the second will not. So the

question is: is accepting that you have the disease on this particular occasion

to follow the first or the second rule? Depending on how we answer that

question, we will be led to different conclusions about the probability that you

have accepted the truth. (This is just the reference class problem.)

As with likelihoodism, I do not think Neyman and Pearson’s broad

view is wrong. The commitments of the view are right. It is true that if we

follow these rules, we will in fact accept the truth with some known probability

(relative to repeated followings of that rule).

But imagine again you test positive nine hundred and fifty thousand

times in one million tests. Then it’s true that there is a rule of behavior, which

you could follow, and which will very, very often lead you to accept the truth.

That rule is this one:

(1) If you test positive 950,000 times in 1 million tests, accept that you have

the disease, and if you test negative 950,000 times, accept that you do

not.

But so what? Should we, in light of this rule, then be confident that you have

the disease or not, and on what grounds? Or is there nothing definitive to
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be said here? Can, perhaps, the question of how confident we should be itself

only be answered relative to a rule of behavior?

The intuitive thing to say is this. If you are following a rule which will

lead you to accept the truth p% of the time, then you ought to be p% confident

that you have accepted the truth on this occasion. But that is Fisher’s view.

Fisher, recall, wanted to pivot on the accuracy of a test to arrive at posterior

probabilities. And as we saw, Fisher’s view yields inconsistent prescriptions.17

Now, as with likelihoodism, Neyman and Pearson’s view could be amended.

We could insist that, when you follow a rule which will lead you to accept the

truth at least p percent of the time, be confident that you’ve accepted the truth

on this particular occasion. But also, as with likelihoodism, that amendment

needs explication and then justification.

In sum, in spite of valiant effort, the classicists didn’t make much

progress on the original problem. Fisher inherits the Bayesian problem of

the priors. And Neyman and Pearson inherit the likelihoodist problem of

austerity.

2.3 Construction

2.3.1 Introduction, Redux

I turn finally to the constructive part of this paper, to my answer to

the question: how confident should you be that you have a disease, if you test

17The main problem I raised for Fisher is also awkward for Neyman and Pearson. If you
flip a fair coin, one rule of behavior available to you is this one: accept that you have the
disease if and only if the coin yields heads. And following that rule will lead you to accept
the truth fifty percent of the time. But it is unclear how or whether that fact should bear
on your confidence that you are afflicted.
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positive for it in ignorance of the base rate?

I want to begin by noting that, in the face of one positive test, it seems

reasonable to reassure oneself thus: ‘It’s true I tested positive. But it’s also

possible this disease is rare, in which case I needn’t worry.’

There are two lessons I want to draw from this.

First, when we are thus reassured, we are focused on a prior probability.

To say the disease is rare is just to say that the prior probability you have it

is low. But our focus is an objective prior. It must be. You cannot reassure

yourself with a subjective prior: ‘It’s true I tested positive. But perhaps I was

antecedently very confident that I didn’t have this disease.’ That thought is

not coherent. Thus I think the question we want answered, when considering

this problem is, ‘what is the objective probability I am afflicted, in light of my

data?’ That is the question that I think we care about.

But notice that the objective probability I am afflicted, in light of my

data, is inescapably sensitive to the objective prior probability that I was

afflicted. In our case, the probability I have a disease is inescapably sensitive

to the base rate. And hence – if we’re going to answer the question I think

we want answered – we must somehow marshal our data in the service of

determining objective priors.18 We must, in other words, somehow marshal

our data in the service of determining the base rate. That is the first lesson.

Second, I take it for granted that, at a certain point, it becomes un-

reasonable to be reassured by the thought that the base rate could be low.

Supposing you test positive 950,000 times in 1 million tests, it would be odd

18The discussion to follow puts things in terms of base rates, and objective chances. But
I think the argument can apply to any notion of objective probabilities you favor – for
example, the evidential probabilities of Williamson (2000, 209-230).
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to reassure yourself, ‘perhaps the base rate is minuscule or even zero. And

thus I needn’t be worried.’ It is true, of course, that if the base rate is zero,

you shouldn’t be worried. The posterior chance you are afflicted is also zero.

But I take it as a datum that in ignorance that response is too optimistic.

And I think our view must account for this transition. It must explain why it

might be reasonable to be reassured after one positive test, that the base rate

could be low, but not after 950,000.

2.3.2 The Proposal

So here is my proposal. I want to begin by first considering the easier

case: suppose you test positive 950,000 times in 1 million tests. This thought,

I claim, is too optimistic: ‘Perhaps the base rate is minuscule or even zero.

And thus I needn’t be worried.’ But why is that thought too optimistic?

First, to make things simpler, let us suppose the base rate is zero. Then

I contend there is something objectionably remarkable about 950,000 positive

tests. The base rate’s being zero would entail that your epistemic life is more

exciting than it probably is.

Here is what I mean. If the base rate is zero, and you test positive

950,000 times in 1 million tests, then you’ve received a mountain of evidence

in support of a hypothesis which had no chance of being true. But now consider

the following question: before you observed your data, how confident should

you have been that evidence as strong as yours would support a hypothesis

which had zero chance of being true?

The answer is: you should have thought that extremely improbable. I’ll

get in to the details below, but for now I hope it’s intuitive that 1 million tests,

like the one we’ve described, are very unlikely to provide evidence as strong as
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950,000 positive tests in support of a hypothesis that had no chance of being

true. For in order to do so, the test would either have to yield 950,000 positive

tests, while the base rate is zero, or yield 950,000 negative tests, while the base

rate is 1. And the chance of either of those things happening is minuscule.

Now you might object at this point: even if the base rate is one, it is

unlikely that I would test positive exactly 950,000 times (as opposed to, say,

949,487 times, or 950,132 times, or whatever). That’s right, but it is a red

herring. When I say ‘it is unlikely that evidence as strong as that supplied

by 950,000 positive tests would support a hypothesis that had zero chance

of being true,’ I mean that even conditional on your receiving evidence as

strong as 950,000 positive tests – that is, conditional on your either receiving

exactly 950,000 positive or 950,000 negative tests – it is very unlikely that

your evidence would support a hypothesis that had zero chance of being true.

(Imagine an oracle tells you, ‘you will either receive 950,000 positive tests or

950,000 negative tests.’ And now ask yourself: how likely is it that my evidence

will support a hypothesis which had zero prior chance of being true?)

So that is what I mean when I say that it would be remarkable if

evidence as strong as that supplied by 950,000 positive tests supported a hy-

pothesis that had zero prior chance of being true.

Now, I need one further claim to get my proposal off the ground. In

ignorance of the base rate, I contend, we should not think ourselves or our

data remarkable. We should not take, for example, 950,000 positive tests to

have supplied evidence that that very data supports a hypothesis which had

zero chance of being true in the first place.

I take that last claim to be fundamental. It’s meant to be akin to the

Principal Principle or the Principle of Indifference. Bedrock. But allow me at
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least a bit of rhetoric. When we come into the world, and we confront it in

empirical ignorance, nature nevertheless supplies us with an a priori guarantee

– that our evidence and our epistemic lives will likely be boring and staid. In

situations like the one we’ve been considering, we can be confident that our

evidence will support a hypothesis that had some positive probability of being

true to begin with. And it would be odd, in ignorance and after the data

comes in, to suddenly think you or your data exceptional.

But if that’s right, and you test positive 950,000 times, you should be

very confident that your data does not support a hypothesis that had zero

chance of being true to begin with. And hence, if you receive very strong

evidence in support of your being afflicted, you should be confident that the

base rate is not zero.

That’s really the meat of my proposal, though work needs to be done to

generalize it. But first let me note that the proposal I’m offering is a classical

one, closest in spirit to Fisher’s. I suggest we use the pre-data fact – that it is

very unlikely that we would receive strong evidence in support of a hypothesis

which antecedently had zero chance of being true – to be post-data confident,

after 950,000 positive tests, that the base rate is non-zero.

But where do we go from here? Even if you’ve agreed with me thus

far, all I’ve offered is an argument that you should be confident, after 950,000

positive tests, that the base rate is non-zero. But the base rate’s being non-

zero is consistent with the base rate’s being minuscule. In fact, it’s consistent

with the base rate’s being so small that, even considering your 950,000 positive

tests, it is still objectively unlikely that you are afflicted.

But the generalization step is no giant leap. I’ve noted so far that

it’s unlikely that evidence as strong as that supplied by 950,000 positive tests
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would support a hypothesis which had zero chance of being true. We can

generalize the point by noticing that, as far as our test is concerned, it’s also

unlikely that evidence as strong as that supplied by 950,000 positive tests

would support a hypothesis which had a minuscule or very small chance of

being true. After all, in order for that to occur, you would either (i) have

to test positive 950,000 times while the base rate is very small or (ii) test

negative 950,000 times while the base rate is very large. But if the base rate

is very small, then it is very unlikely that you have the disease. And hence it

is very unlikely that you would test positive 950,000 times. Similarly, if the

base rate is extremely high, it is very likely that you are afflicted. And hence

it is very unlikely that you would test negative 950,000 times. And thus in

general, in a situation like this one, it is very unlikely that evidence as strong

as that supplied by 950,000 positive tests would support a hypothesis that had

a minuscule chance of being true in the first place.

In slogan form, then: our evidence will likely support a hypothesis

which was likely to be true to begin with. And again, that is a pre-data claim.

But I suggest we use it to regulate our post-data confidence – to be confident

that the evidence we in fact observe also supports a hypothesis which was

likely to be true to begin with.

Now, perhaps you’re wondering: how is this an improvement on Fisher’s

view? Here’s one way: Recall the fair coin we used to bring Fisher down –

on one side of it, it says, ‘you are afflicted’, on the other, it says, ‘you aren’t’.

Fisher’s view entailed that, because the coin’s report is accurate 50 percent

of the time, we ought to be 50 percent confident that what it reports is true.

That’s not my view. On my view, we should ask: if I flip this coin, what is

the probability that I will receive evidence in support of a hypothesis which
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had a very low chance of being true? And the answer is: the probability of

that is zero, because the coin is guaranteed not to provide any evidence at all.

And so, on my view, after flipping the coin, you ought to be certain that your

data does not supply evidence in support of a hypothesis which had a very

low chance of being true. But of course you should, in fact, be certain of that,

because the coin doesn’t supply evidence in support of any hypothesis at all.

The second crucial difference, between my view and Fisher’s, is that

my view targets prior chances. Fisher thought Bayesian subjective priors in-

coherent, and so tried to offer a view which relied only on probabilistic claims

that would be true irrespective of priors. So, in ignorance of the base rate,

recall, he thought we should fall back to claims about the accuracy of a test.

But likelihoodists, at least, would just raise the following simple objection to

Fisher: a test might be accurate, say, 95 percent of the time, and yet indicate

a hypothesis is true which is very unlikely to be true. If, for example, the base

rate is zero, and you test positive using a test which is accurate 95 percent of

the time, then it is yet very unlikely that you have the disease. On my view,

however, the whole point is to try to use our data to say something about the

prior chances. Because ultimately the question I think we’re interested in is

the objective chance we are afflicted, conditional on that positive test. So, if

in response to my view the likelihoodist points out that the base rate could

be zero, and yet I could test positive, I will respond ‘you’re right, that’s the

point! In any given case, there’s as much as a 5 percent chance that such a

thing could occur – that is, that I should observe data which supports a hy-

pothesis which has zero chance of being true. Thus while I’m fairly confident

that the base rate is non-zero, in light of my positive test, I can only be 95

percent confident that that is so.’
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2.3.3 Some More Detail

Let me, for thoroughness, work through the details of how the view I’ve

offered responds to our original example. I’ll then turn to the question of how

to generalize the picture.

Suppose you test positive once in ignorance of the base rate, and your

test has fixed true positive and negative rates of 95 percent:

P (+|D) = .95

P (−|¬D) = .95

Now, consider the possibility that the base rate might be, say, less than

1 in 1000. If so, then your evidence supports a hypothesis which had a fairly

low chance of being true.

So here is the question I think is relevant: prior to taking the test, what

was the probability that evidence as strong as yours should have supported a

hypothesis which had less than a 1 in 1,000 chance of being true?

In order for your evidence to do so you would need to test positive while

the base rate r < .001 or test negative while the base rate r > .999.19 And

the probability of that is given by

P ((+ ∧ r < .001) ∨ (− ∧ r > .999)) = P (+ ∧ r < .001) + P (− ∧ r > .999)

= P (+|r < .001)P (r < .001)

+ P (−|r > .999)P (r > .999)

19I take it for granted here that, whatever our account of evidential strength, a positive
test is as strong evidence that you have the disease as a negative test is that you lack it.
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Considering the left term, P (+|r < .001), note

P (+|r < .001) = P ((+ ∧D) ∨ (+ ∧ ¬D)|r < .001)

= P (+ ∧D|r < .001) + P (+ ∧ ¬D|r < .001)

= P (+|D ∧ r < .001)P (D|r < .001)

+ P (+|¬D ∧ r < .001)P (¬D|r < .001)

= P (+|D)P (D|r < .001) + P (+|¬D)P (¬D|r < .001)

= .95P (D|r < .001) + .05P (¬D|r < .001)

= .95P (D|r < .001) + .05(1− P (D|r < .001))

= .9P (D|r < .001) + .05

< .9× .001 + .05

= .0509

By a symmetric argument

P (−|r > .999) < .0509

Hence

P ((+ ∧ r < .001) ∨ (− ∧ r > .999)) < .0509P (r < .001) + .0509P (r > .999)

= .0509(P (r < .001) + P (r > .999))

< .0509

Thus, you ought to think, prior to taking the test, there is at most a 5.09%

chance that your data will support a hypothesis which has less than a 1 in

1,000 chance of being true. And hence I think it would be mildly remarkable

if it did.
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And on my view, you ought not take a positive test to be evidence that

your data is remarkable. And thus, if you test positive in ignorance of the base

rate, you ought be 94.91% confident that the base rate is at least 1 in 1000.

And hence, you ought be 94.91% confident that the chance you are afflicted,

conditional on your positive test, is at least 1.7%.20

Now that is a weak thing to say. But importantly it’s not as weak as

what the likelihoodists and Neyman and Pearson say. Because as more data

comes in, we’ll be able to say more. Suppose, for example, you test positive 10

times. Then the chance of receiving evidence as strong as that in support of

a hypothesis which had, say, less than a 1 in 1 billion chance of being true is

itself approximately 1 in 1 billion. And hence on my view, if you test positive

10 times, you ought to be very confident that the base rate is at least 1 in 1

billion. And hence you ought to be very confident that the posterior chance

you are afflicted is high. The view thus captures the natural thought, that

after a single positive test, you should be uncertain about the chance you

are afflicted, but that after 10 positive tests, or 950,000, you ought to start

worrying.

20This just follows from Bayes’ Theorem, and the fact that it is a monotone increasing
function of the prior. If c(D) > .001, then

P (D|+) =
P (+|D)P (D)

P (+)

=
.95P (D)

P (+|D)P (D) + P (+|¬D)P (¬D)

=
.95P (D)

.9P (D) + .05

>
.95× .001

.9× .001 + .05

= 1.7%
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2.3.4 Two further examples and a gesture at generalization

Before closing this essay, I want to discuss two further examples, to

stave of some confusion, and to see how the view I’ve offered here might

generalize more widely.

Let us, finally, leave our disease with mystery base rate behind. Instead,

imagine the following: you are standing in a circle, surrounded by 1000 cups,

one of which contains a ball. You do not know which. And suppose that before

you is something that looks like a compass needle. And that needle behaves

as follows, if you spin it, there is a 95 percent chance it will land on the cup

containing the ball, and a 5 percent chance it will indicate some other cup. (It

misfires randomly, say.) You spin the needle and it indicates cup 17.

Here we have 1000 hypotheses about the ball’s location, and 1000 pos-

sible pieces of evidence. So now let us ask, as we did above: prior to observing

your evidence, how confident should you be that your evidence will support

a hypothesis that was unlikely to be true, say, that had a 1 in 1000 or less

chance of being true?

Notice a problem arises here, which did not arise when considering our

disease with mystery base rate. Suppose the ball was placed randomly, and

hence the prior chance that the ball would end up in any particular cup was

1 in 1000. (In other words, suppose the chance distribution over the space

of cups was uniform.) Then, no matter which cup contains the ball, it was

certain that you would receive evidence as strong as your evidence in support

of a hypothesis that antecedently had a 1 in 1000 or less chance of being true.

The moral is that, in this case, you cannot place an upper bound on

the probability that you should have observed evidence, as strong as yours,
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in support of a hypothesis that had a 1 in 1000 or less chance of being true.

But this is not really a problem for the view I’ve offered here, for we can still

find upper bounds, the prior chances we consider just have to be smaller. For

example, we can ask, what are the chances that I should observe evidence

in support of a hypothesis that had less than a 1 in 10, 000 chance of being

true? And by a crude calculation,21 the chance of that is less than 1 in 10.

And hence, on my view, if the needle indicates cup 17, you ought to be 90%

confident that the prior chance the ball would be placed in cup 17 was greater

than 1 in 10,000.

More generally, the point is that the chance – that you will receive

evidence supporting a hypothesis which is antecedently unlikely to be true –

depends upon the possible evidence you might observe. But that is our lot.

When more possible pieces of evidence are available to us, the more possibilities

there are for our evidence to support a hypothesis which was unlikely to be

21Let ↑ i be the proposition ‘the needle indicates cup i’ and let ci be the chance the ball
is in cup i. Then the chance that our evidence will most strongly support a hypothesis that
had less than a 1 in 10,000 chance of being true is given by

P
(

(↑ 1 ∧ c1 <
1

10, 000
) ∨ (↑ 2 ∧ c2 <

1

10, 000
) ∨ . . . ∨ (↑ 1, 000 ∧ c1,000 <

1

10, 000
)
)

= 1000× c
(
↑ 1 ∧ c1 <

1

10, 000

)
= 1000× c(↑ 1|c1 <

1

10, 000
)c(c1 <

1

10, 000
)

= 1000×
(
c(↑ 1|1)c(1|c1 <

1

10, 000
) + c(↑ 1|¬1)c(¬1|c1 <

1

10, 000
)
)

< 1000×
(
.95× 1

10, 000
+
.05

999
× 9, 999

10, 000

)
≈ 1000× 1

10, 000

=
1

10
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true at the outset. But that does not mean the strategy I suggested we use

above cannot be applied.

Let me consider one last example, this time dealing with continuous

hypothesis spaces. Forgive me if the discussion, at this point, is more abstract

than it was for the cases above. More detail can be found in Appendix A.

Imagine you have a friend. She is about to throw a dart at a dartboard,

and your aim is to determine at which point she is aiming. Now, her aim is

fairly accurate, but it’s not perfect – and in fact the error in her aim follows

a (bivariate) normal distribution, with a standard deviation of 1 inch. (On

average, in other words, she misses her target by about one inch.) She throws

the dart, and hits the point p. What should you now think about where she

was aiming? We now have an infinite set of hypotheses – all the points she

could be aiming at – and prior to the experiment, an infinite set of possible

data points.

This makes things more complicated. Suppose, for example, you had

asked yourself prior to the experiment, what are the chances that I should

observe evidence in support of a hypothesis that had zero chance of being

true? This is going to depend on how your friend decided on which point she

would aim at. Suppose, for example, that she chose which point to aim at

via a uniform density over the dartboard. If so, then it would be a certainty

that you would observe evidence in support of a hypothesis which had zero

prior chance of being true. (This, because every hypothesis of the form ‘she

is aiming at point x’ has zero prior chance of being true.) So it’s hard to see

how the strategy I advertised above is supposed to apply in this case.

So here is my suggestion for a more general strategy in cases like this. I

take it that, whatever evidence is supplied by your friend’s hitting some point
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p, that evidence is captured in the likelihood function, L(H) = p(p|H), over

the space of hypotheses, or over the space of possible points she might be

aiming at. (Of course, p(p|H) will have to be a density function now, and not

a probability function, but this is no great hurdle.)

Now, let us define a likelihood region, Rλ thus:

Rλ = {H : L(H) > λ}

Rλ is, in other words, the set of all hypotheses which assign a probability of at

least λ to your friend hitting the point she did, p. In our setup – where your

friend is aiming at a point on a dartboard, and her error follows a standard

bivariate normal distribution – Rλ will just define a circle, centered at p, and

whose radius is determined by λ. (See Appendix A for an illustration.)

And now I think we can follow the strategy I offered above. You can

think about drawing a likelihood region as a procedure – one which you might

repeat over many iterations of the experiment: Alice selects and aims at some

point, throws a dart, and hits the point p1, you draw a λ-sized likelihood

region around p1. Bob steps up, aims at some possibly new point, hits the

point p2, and you draw a λ-sized likelihood region around p2. Charlie steps

up and hits point p3, etc. Then here, I think, is the relevant question – what

are the chances that, on any given iteration of this procedure, the likelihood

region I draw will circumscribe a region which had a very low prior chance of

containing the point each friend was aiming at?

Obviously, the answer to that question will depend on the size of λ,

and on the size of the dartboard. (If you confront a very large dartboard, and

you consider a very small likelihood region, then it’s possibly quite probable

that the likelihood region you will construct will be one which had a low prior
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chance of containing the point your friend was aiming at.) But the question

will have a determinate answer, which I think we can and should use to regulate

our posterior confidences.22

2.3.5 Conclusion

Imagine a conversation between Edwards, the likelihoodist, and Fisher,

the classicist. Fisher tests positive 950,000 times for a disease with mystery

base rate. Edwards laments, ‘There’s really nothing to be said, Fisher, about

the probability you are afflicted. Without a base rate, we don’t have a prior,

and hence we cannot locate a posterior probability.’ Fisher responds, ‘But Ed-

wards, I know this many tests will provide an accurate result with an extremely

high probability.’ Edwards answers, ‘That’s true, Fisher, but sometimes very

accurate tests indicate hypotheses are true which were very unlikely to be

true.’

My contribution to this debate comes at the end of that conversation.

Edwards is right; sometimes extremely accurate tests do support hypotheses

that had a small prior chance of being true in the first place. But my point is:

that itself is unlikely to happen. So while I think we should worry about the

possibility, I also think we should only lend it as much credence as it deserves.

In ignorance of the base rate, or, in ignorance of the chance distribu-

tion over some space of hypotheses in general, we can nevertheless arrive at

confidence that those hypotheses supported by our evidence are true. To do

so, all that’s required is that we remain confident, after our data comes in,

that our epistemic lives are unremarkable ones – that our evidence supports

22For more detail on this example, see Appendix A.
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hypotheses which were relatively likely to be true to begin with. And as I’ve

noted here, at least before the data comes in, we should be confident that our

epistemic lives will be unremarkable in that respect.
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Chapter 3

Evidential Decision Theorists Should Two-Box

3.1 Introduction

In this paper, I argue that causal and evidential decision theory rec-

ommend the same action in Newcomb cases. I am not the first to defend this

view. But the argument I offer here is not Ellery Eells’ tickle defense of evi-

dential decision theory, nor is it Richard Jeffrey’s ratificationism, nor does it

rely on Huw Price’s agent probabilities.1 (It is, however, in the vicinity of all

of those arguments.)

3.2 Newcomb Problems

I begin with a Newcomb problem.2 Imagine you know an expert psy-

chologist. She offers you $1,000, but says, ‘earlier today, I read your psy-

chological profile, and predicted whether or not you would take this $1,000.

If I predicted you would, I did nothing, but if I predicted you would not, I

deposited one million dollars in your bank account.’ Normally you would be

skeptical. But you have seen the psychologist accurately predict (and make

the appropriate deposits) 1,000 other times with 1,000 other people, with say

an equal number of people refusing and accepting the $1,000, and she has only

1See Eells (1981), Jeffrey (1983), Price (1991)
2This example is J.H. Sobel’s by way of Jim Joyce (Joyce, 1999, 146-157).
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been wrong once. The question is: should you accept the $1,000?3

And the puzzle here is as follows: while your refusing the $1,000 would

apparently provide you with evidence that you have an additional one million

dollars in your bank account, nevertheless refusing is causally inert with respect

to the contents of that account. Thus, if you want evidence that you have $1

million in your account, it seems you should refuse the $1,000. But if you

are instead guided by the causal implications of your actions – if your aim in

acting is to causally bring about positive outcomes – you ought to accept the

$1,000. This last, because whether the psychologist deposited $0 or $1 million

in your bank account, you would be better off with an additional $1,000.

On the orthodox line, to refuse the $1,000 – in the hopes of receiving

evidence that the psychologist deposited $1 million – is to follow the recom-

mendations of evidential decision theory. And to accept the $1,000 – perhaps

recognizing that you cannot, in acting, change the past – is to follow the

recommendations of causal decision theory.

3Robert Nozick Nozick (1969) originally presented the problem as follows:

Suppose a being in whose power to predict your choices you have enormous

confidence.... There are two boxes (B1) and (B2). (B1) contains $1000. (B2)

contains either $1,000,000 or nothing. You have a choice between two actions

(1) taking what is in both boxes.

(2) taking only what is in the second box.

Furthermore, and you know this, the being knows that you know this, and so on:

(I) If the being predicts you will take what is in both boxes, he does not put $1,000,000
in the second box.

(II) If the being predicts you will take only what is in the second box, he does put the
$1,000,000 in the second box.

65



Formally, evidential decision theory recommends that you act so as to

maximize, over all available actions A, and for outcomes O

EEV (A) =
∑
O

P (O|A) · V (O&A)

Here, P (O|A) is just given by the agent’s subjective credence function – it

is the subjective conditional probability of O given A – and V is the agent’s

valuation function.

Causal decision theory, on the other hand, recommends that you act

so as to maximize, over acts A and for outcomes O:

CEV (A) =
∑
O

P (A > O) · V (O&A)

Where P (A > O) is referred to as the causal probability of O given A. And

this is typically cashed out as something like the objective chance of O which

would result from the performance of action A. And because the objective

chance that you’ve received $1 million does not change if you refuse the $1,000,

causal decision theory recommends accepting it.

3.3 Correlation and Causation

The rallying cry of causal decision theorists is that old saw ‘correlation

is not causation!’4 The number of people who drown in San Diego is positively

correlated with ice-cream sales.5 Nevertheless, if you are a nefarious ice-cream

salesman who cares little about the suffering of others, it is irrational to round

4Here’s Joyce: “Evidential relevance isn’t causal relevance; Correlation isn’t causation;
indicating is not promoting.” (Joyce, 1999, 163)

5People both buy more ice cream and go swimming more often in the summer, which is
what explains this correlation.
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up a bunch of San Diegans and drown them. Or, to consider a Stalnakerian

medical example:6 Suppose you know that IQ is positively correlated with

alcohol abuse. (This may be true, actually.) But suppose you also know – as

is plausible – that abusing alcohol does not cause you to have a high IQ. Then

you should not cultivate a drinking habit in the hopes of improving your IQ.

Similarly, in the Newcomb problem, refusing $1,000 is correlated with having

one million dollars in your bank account. But ‘correlation is not causation!’

the causal decision theorist cries, and thus it would be foolish to refuse.

That, it seems to me, is right. But what has always struck me as strange

about these sorts of examples, levied in support of causal decision theory, is

this: cultivating a drinking habit, let’s stipulate, will not cause you to have

a high IQ. But it’s further not at all clear that cultivating a drinking habit –

in the hopes of improving your IQ – would provide evidence that you have a

high IQ either. Imagine, for example, you have a friend who has tried but has

never enjoyed alcohol. One day he reads in Reader’s Digest that alcohol abuse

is correlated with IQ, and so forces the habit upon himself. As far as I can

tell, you do not, and he does not, thereby get evidence that he has a high IQ.

But if that’s right, then evidential decision theory, along with causal decision

theory, would not recommend his drinking.

You might think the intuition in that case a mere artifact of the cho-

sen example. Here’s another one: being an academic is (surely) non-causally

correlated with owning a Volvo. Now suppose your friend learns about this cor-

relation, decides he wants to be an academic, and so purchases a Volvo. Again,

that purchase, it seems to me, does not provide evidence that that friend is or

6See Stalnaker (1980 [1972]), and for discussion Gibbard & Harper (1978 [1981]). An
example like this is also discussed in Egan (2007).
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will become an academic, despite the correlation between purchasing a Volvo

and becoming an academic.

Really these examples are not hard to find: flossing is correlated with

heart health. But the connection is not causal; instead, those who take better

care of themselves in general will both floss and eat a heart-healthier diet. So if

a friend takes up flossing only upon learning of the correlation, and otherwise

makes no changes in his life, you do not get evidence that the condition of his

heart will improve.

In all of these cases, it seems to me, the problem is that your friend is

attempting to exploit a mere correlation to obtain some end – a higher IQ, or

an academic career, or a healthier heart. And it just doesn’t seem true that, in

making that attempt, he receives evidence that he has already or will succeed.

I think the same is true in Newcomb’s problem. If an evidential decision

theorist refuses the $1,000, she is attempting to exploit a mere correlation to

obtain evidence that she has $1 million. She is (in a way I will later make

precise) like our reluctant drinker who forces the habit on himself in the hopes

of improving his IQ. And it’s at least not obvious that refusing would supply

her with the evidence she seeks – that she has $1 million in her bank account.

In fact, I think we can show that she does not receive that evidence. And if

that’s right, then evidential decision theory – along with causal decision theory

– also recommends her accepting the $1,000.

3.4 Correlations, Knowledge, and the Timeline

In spelling out my argument, I want to begin with the assumption that

every genuine correlation arises out of some, perhaps distal, common cause.

The reason that drinking is correlated with IQ is, perhaps, because there is
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a gene which both disposes people to drink, and equips them with a high

IQ. The reason that academics buy Volvos, assuming one is not the cause of

the other, is that there is some feature F which causes both Volvos and an

academic career to seem appealing to those who have F . In later sections I

will consider whether or not that assumption can be relaxed. (Spoiler: I think

it can.)

So let us suppose there is a gene, disposing those who have it to drink,

and which equips those who have it with a high IQ. Then we can represent

the causal structure of the situation in this simple graph:7

Gene
Drink

Have a high IQ

Now here is, I think, the crucial question: given this causal structure, do people

with the gene drink because doing so is correlated with having a high IQ?

On the most natural understanding of the situation, the answer to that

question is no. The gene is, after all, responsible for the correlation. So the

timeline is as follows: the gene causes those who have it to drink and to have a

high IQ, thus causing there to exist a correlation between drinking and having

a high IQ. We then later come to discover that correlation through observing

that drinkers on average have higher IQs than non-drinkers. The important

point is that in a natural case like this one, our knowledge of, or belief in,

the correlation comes after the gene establishes the correlation. From that it

follows that those who were driven to drink by the gene were not motivated

7Ellery Eells drew pictures that look very much like my pictures Eells (1981). But, as I
will discuss below, Eells and I look at these pictures and see different things.
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to do so by the belief or knowledge that drinking is correlated with having a

high IQ.

So here is a true conditional: if those with the gene did not believe or

know that that there existed a correlation between drinking and having a high

IQ, they would yet be motivated to drink.

We can say a similar thing about Volvo buying academics. Suppose

there is some feature F which disposes those who have it both to Volvos and

to the academy. Thus

F

Buy a Volvo

Become an academic

Then again the most natural timeline is as follows: those with F buy Volvos

and become academics. This establishes a correlation, which we later discover.

And hence this conditional is true: if those with F did not know or believe

that buying Volvos was correlated with becoming an academic, they would yet

purchase Volvos.

So let us return to our friend who forces upon himself a drinking habit,

only after and, let’s say, only because he learns of a correlation between drink-

ing and IQ. Then I think we can explain why his drinking does not provide

evidence he has a high IQ as follows: he would not be inclined to drink if

he did not know about the correlation between drinking and IQ. And thus a

conditional which is true of those who have the IQ-alcohol gene, is not true

of your friend. Hence your friend does not have the gene, and therefore his

drinking is not evidence that he has a high IQ.
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The same goes for Volvos and the academy. If there is a feature F

which both inclines those who have it to purchase Volvos and to become aca-

demics, then – on the most natural understanding of the case – if you have F

you would be inclined to buy a Volvo even if you didn’t know that buying a

Volvo is correlated with becoming an academic. So if you buy a Volvo only

because doing so is correlated with becoming an academic, you do not have F ,

and hence your purchasing a Volvo is not evidence that you will become an

academic.

The story about Newcomb cases is a bit more complicated, but I’ll ar-

gue in the next section that the argument applies to them as well. But before

that let me make a simpler point: if the existence of a correlation between some

action and some outcome were enough to establish that your performing that

action is evidence that you will secure that outcome, then evidential decision

theory was in trouble long before Newcomb’s problem arose. For evidential

decision theorists would be buying Volvos in the hopes of becoming confident

that they will secure academic postings and trying to drink their way to confi-

dence they have high IQs. And that would be objectionable without involving

psychologists with preternatural abilities to predict our future behavior.

But, as I’ve argued here, whatever is the true decision theory, trying

to drink your way to confidence you have a high IQ or maneuver a Volvo into

an academic career does not provide you with evidence that you have a high

IQ or will have an academic career. And hence evidential decision theory does

not recommend the attempt.
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3.5 Back to the Newcomb

I think the point of the above section extends directly to Newcomb

problems. But to see how I want to simplify the case.

Forget the expert psychologist for a moment. Instead, imagine that you

and 1,000 friends come across a black box – it looks vaguely like an ATM – out

in the middle of the desert. And you notice $1,000 protruding from the cash

slot. You then watch as each of your friends steps toward the machine and

either, after inspecting the machine for a while, leaves the $1,000 in the slot,

or takes the $1,000 (after which it is replaced for the next friend). But then,

everyone checks their phone, and those who did not take the $1,000 notice an

email from their bank, thanking them for a recent $1 million deposit. The

crazy part is that, in each case, the timestamp on the email reveals it was sent

moments before the person declined to take the $1,000. So somehow, the box

is predicting whether or not you will refuse, and making deposits accordingly.

You then step up to the box, and have to decide whether or not to take the

$1,000.

I think this counts as a Newcomb problem, but I also think it is directly

analogous to the alcohol-IQ, and academic-Volvo cases described above. If

there is a genuine correlation here, then there is some feature F of those who

refuse the $1,000, which allows the machine to place $1 million into refusers’

bank accounts. But notice that those who refused the $1,000 did so without

knowing or believing that doing so was correlated with having $1 million dollars

in their bank accounts.

And really, whenever we come to learn about a correlation through

the observation of correlated events, it has to be that way. You can only

observe a correlation if that correlation exists. But the correlation exists only
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if there is some common cause whose operation preceded the correlated events.

8 Hence that common cause precedes and thus cannot be sensitive to our

knowledge of or belief in the existence of that correlation. Maybe there are

complicated causal structures that we can imagine where the belief that two

events are correlated is required, in order for the cause which generates that

very correlation to operate. I will consider that possibility later. For now

I’ll just point out that huge swaths of cases that have been called Newcomb

problems do not have a complicated causal structure like that.

Returning to our ATM, you’ve watched half of your 1,000 friends refuse,

and those who did all noticed they received $1 million deposits. Now, I con-

tend, if you want to know whether or not your refusing would provide evidence

that you have $1 million in your bank account, the question you face is: if you

did not know that refusing was correlated with discovering $1 million in your

bank account, would you yet refuse? And if you are an evidential decision the-

orist, who would behave rationally, the answer to that question is no. (After

all, in that situation, the expected value of refusing is $0, while the expected

value of taking the $1,000 is $1,000.) Hence, if you are a rational evidential

decision theorist, you do not have the feature which inclines people to refuse

(and which the machine exploits to deposit $1 million) and thus your refusing

would not provide you with evidence that the machine has placed $1 million

in your bank account.

Actually, I think that last part, though true, is not crucial. Suppose,

for example, you do convince yourself that you would refuse the $1,000, even

if you did not know about the correlation between refusing and the machine’s

8Again, I will later try to relax this assumption, because it is contentious.

73



depositing $1 million. Perhaps you wouldn’t take the money, because it would

seem to you too good to be true. Then it seems to me that fact – the fact

that you would refuse – gives you all the evidence you can get that you have

the feature F , and hence that the machine deposited $1 million in your bank

account. Put more precisely: conditional on the way you would behave if

you did not know refusing was correlated with receiving $1 million, refusing

is independent of receiving $1 million. And if that’s right, then evidential

decision theory still does not recommend refusing, even if you would have

refused were you unaware of the correlation. Similarly, if you haven’t yet but

would have taken up drinking even if you did not know that drinking was

correlated with having a high IQ, well then that is evidence you have a high

IQ. But then your actually doing so does not provide any further evidence of

your intelligence.

That last, perhaps, reminds you of Ellery Eells’ tickle defense of ev-

idential decision theory Eells (1981). Eells’ view, recall, was this: the only

way the feature F could cause you to refuse is by first causing you to have

certain beliefs and desires which would incline you to refuse. Hence the causal

structure is more like this:

F

Beliefs and desires incline you to refuse Refuse the $1,000

Machine deposits $1 million

But, Eells contended, in a decision problem, you know your beliefs and de-

sires (as represented by your subjective probability and valuation functions).

And given the causal structure just sketched, conditional on those beliefs and

desires, refusing the $1,000 and gaining $1 million are independent.
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But to the extent Eells and I agree, I don’t think he captures the

whole story here. Because on Eells’ view, anyone whose beliefs and desires

incline them to refuse will get evidence that they have $1 million in their bank

accounts. But now recall your friend who forces on himself a drinking habit

only after and because his drinking is correlated with having a high IQ. Given

he took up drinking, his beliefs and desires do apparently incline him to drink.

But, I contend, he does not receive, nor do those beliefs and desires supply,

evidence that he has a high IQ.

Eells is right that – if there is a common cause of drinking and having a

high IQ – that cause will operate by influencing a person’s beliefs and desires.

But the crucial question, I contend, is not whether a person’s current beliefs

and desires incline her to drink, but instead whether she would be so inclined,

were she unaware that alcohol abuse and IQ are correlated.9

3.6 Recursive Newcomb

Let us make things a bit more complicated. I promise I will return to

our expert psychologist eventually. But first consider again our desert ATM.

$1,000 protrudes from its cash slot. But suppose this time you confront it with

2,000 friends, instead of a mere 1,000.

9I think that this general point applies to the other reconciliations of causal and evidential
decision theory that I mentioned in the introduction – those offered by Jeffrey Jeffrey (1983)
and Price Price (1991). Both Jeffrey and Price contend that there is some fact about you, in
relation to the decision problem you currently face, which renders your refusing independent
of your receiving $1 million. For Price, it’s the belief that your refusing would provide
evidence that you have $1 million in your account. For Jeffrey, it’s the fact that, in the
decision problem you currently face, you would accept the money. My view is different: I
contend that to answer the question of how you ought to behave in the decision problem you
currently face, you must ask yourself how you would behave in a different decision problem
– namely one where you did not believe your action and the desirable outcome correlated.
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Half of those 2,000 friends approach the ATM. Some refuse, some do

not. The bank sends the relevant emails, and thus you learn about a correlation

between refusing the $1,000 and the machine’s depositing $1 million. And now

you and the 1,000 remaining friends have to decide what to do. You all confer,

and conclude that the first wave was mad – there is no way you would have

refused if you did not know about the correlation. So then, each of these latter

1,000 friends approaches the machine. Then, some of them refuse, and some of

them do not. And, again, each of the refusers checks her phone and discovers

that $1 million has been deposited in her bank account. You then approach

the machine, and you have to decide whether or not to refuse the $1,000.

Now, notice, the second wave of refusers would not have refused if they

did not know about a correlation between refusing and receiving $1 million.

But nevertheless, their refusing was correlated with receiving $1 million. So

surely your now refusing would provide you with evidence you have $1 million

in your bank account, even though you would not have refused if you did not

know about the correlation.

That seems right, but I don’t think it is. The first wave of 1,000 friends

establishes the existence of some common cause C1 of their refusing, and of

their receiving $1 million. Thus the causal structure is this one

C1

Refuse $1,000

Get $1 million

But the second wave of 1,000 friends, we stipulated, all agreed that they would

not be inclined to refuse were they unaware of the correlation between refusing

the $1,000 and receiving $1 million. Hence C1 is not present for any of the
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friends in the second wave. Thus, given there is a correlation between second

wavers’ refusing and their receiving $1 million, there must be some other cause

C2 6= C1, which along with the knowledge of a correlation between refusing

$1,000 and getting $1 million, causes them to refuse:

[C2 + knowledge ∃C1 6= C2]
Refuse $1,000

Get $1 million

So now you approach the ATM. As a faithful evidential decision the-

orist, you know C1 is not present in your case (because you would not be

inclined to refuse if you did not know the relevant correlation existed). But

now ask: is C2 present in your case? Well, if C2 were present in your case,

then you would be inclined to refuse upon learning of a correlation between

refusing $1,000 and gaining $1 million. But, recall, we decided above that

an evidential decision theorist would not be inclined to refuse upon learning

of that correlation! Hence you do not have C2 either. And hence your now

refusing would not be evidence that you will receive $1 million.

We can iterate, and think about a third wave, and a fourth, etc. But,

so long as you are committed to always following the recommendations of

evidential decision theory, the end result will be a recursive structure. And

the question of whether your now refusing is evidence that you will gain $1

million will always ground out in the base case, in your answer to the ques-

tion: would you be inclined to refuse if you did not know of a correlation

between refusing and gaining $1 million? And if you are an evidential decision

theorist, the answer will be no, and hence evidential decision theory never rec-

ommends refusing, no matter how many waves of friends successfully exploit

the correlation between refusing and gaining $1 million.
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3.7 Objection 1: returning to our expert psychologist

I return, finally, to our expert psychologist. I have been told that

all of the above is irrelevant to the Newcomb case that I presented at the

beginning of this essay. (Recall its contours: an expert psychologist reads

your psychological profile, and predicts whether or not you will refuse her offer

of $1,000.) It is irrelevant because – putting things in terms of the recursive

structure described above – in that case, there is no base case. There is no first

wave of participants, which confronts the psychologist without knowing of or

believing in her predictive abilities. Instead, every participant believes in the

psychologist’s predictive abilities, and that belief is perhaps even a condition

on her ability to make her predictions. And without such a base case, the

recursive structure I described above collapses.10

In response let me first reiterate that, even if the charge sticks, the

recursive structure I described above will arise whenever we discover a corre-

lation through observation. And that includes any realistic medical Newcomb

case, like our alcohol-IQ case. (Another widely discussed one is the smoking

lesion case, where a lesion both inclines people to smoke, and gives them lung

cancer.) In these sorts of cases the cause which generates the correlation will

not require nor be sensitive to the belief that that very correlation exists. I will

still call it a victory if all we’ve here discovered is that evidential and causal

decision theory agree in these cases and a wide range of similar cases where

people have thought their recommendations diverged.

Second, I would find it unsettling if somehow the testimony of the ex-

pert psychologist were crucial to generating a true Newcomb problem – that

10Thanks to Andrew del Rio, David Sosa, and Miriam Schoenfield for pressing me on this
point.
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is, to generating a case which reveals an actual distinction in the recommen-

dations of causal and evidential decision theory. Imagine some non-linguistic

agents, who can only come to learn about correlations through the observa-

tion of correlated events, or who only believe that correlations exist when their

evidence suggests they do. The recursive structure just described will always

arise for them. I would find it odd if it turned out that we linguistic agents

require a distinction between evidential and causal decision theory, while these

non-linguistic, but nevertheless wholly rational, agents would not.

Third, when spelling out the Newcomb problem, authors are typically

explicit that you do receive evidence that convinces you of the psychologist’s

predictive abilities. Here’s Nozick: “you know that the being has often cor-

rectly predicted the choices of other people”(Nozick, 1969, 115). And here is

Joyce: “You have seen the psychologist carry out the experiment on two hun-

dred people, one hundred of whom took the cash and one hundred of whom did

not, and he correctly forecast all but one choice”(Joyce, 1999, 147). I wonder

what is the point of introducing these details. But one natural thought is as

follows: if you had confronted the predictor without observational evidence of

her reliability, you would not believe in those predictive abilities, and hence

you would not have been inclined to refuse the $1,000. But if that’s right, then

I will just run the argument above: if you had whatever feature allowed her to

predict the initial refusers would refuse – in the absence of any observational

evidence of her predictive abilities – you would also be inclined to refuse if you

lacked observational evidence of her predictive abilities. But you would not

be so inclined, and hence you do not have the feature, and thus your refus-

ing would not supply evidence she will accurately predict your behavior. In

other words, in the original presentations of standard Newcomb problems, like
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the Newcomb problem rehearsed at the beginning of this essay, the recursive

structure does seem to arise, base case and all.

More strongly, it seems to me that it is irrational to believe the tes-

timony of the predictor if you have not independently verified her predictive

ability. And if so, then, at least for rational agents, there will have to be a

base case – it will consist of those who refuse though they have not verified

the psychologist’s predictive ability.11 (What about irrational agents? More

on that in the next section.)

One last point: The objector, recall, is proposing that everyone who

confronts our expert psychologists believes in her predictive ability, and that

that is a crucial difference between that case, and for example, the desert ATM

case I presented above. But I think that the objector confronts a dilemma

here, which arises from this question: is the belief that the psychologist is an

accurate predictor required in order for her to be an accurate predictor?

Suppose the answer to that question is no: whether you believe she

can or not, the psychologist can predict whether you will refuse the $1,000. In

that case, I will just run the argument as I ran it above. It doesn’t change the

point if everyone happens to take the predictor at her word. Because you can

still ask yourself the question: would you be inclined to refuse if you did not

believe the predictor was an accurate predictor? And if you are an evidential

decision theorist, the answer will be no. But, because her predictive ability

is not sensitive to the belief, if you had the feature which both inclines those

11This is obviously related to the debate about testimonial reductionism – see Adler
(2017) for general discussion. If you are sympathetic to reductionism, then you should be
sympathetic to the line taken in this paragraph. But you can be an anti-reductionist and
agree that, in this special case, it is not rational to accept on faith the predictive ability of
the expert psychologist.
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who refuse to refuse, and allows the predictor to deposit $1 million, then you

would be inclined to refuse. Hence you do not have the feature, and therefore

your now refusing is not evidence that she deposited $1 million.

So, in order for the objection to succeed, the answer must be yes – the

psychologist can predict whether you will refuse the $1,000, but only because

you believe she can. We might suppose – to put some meat on the proposal

– that our expert psychologist is also an accomplished biologist. And in her

research, she has discovered that there is a peculiar gene, which operates as

follows. If and only if an agent believes the psychologist can predict whether

that agent will refuse the $1,000, then if that agent has the gene, he will refuse,

and if the agent lacks it, he will not. But without the belief, the gene is inert.

In other words, the common cause which both inclines people to refuse the

$1,000, and allows the psychologist to deposit $1 million, requires, in order to

operate, the belief that refusing $1,000 and the psychologist’s depositing $1

million are correlated.

But I worry about the cogency of a case like that. It has some very

peculiar self-referential features. Suppose, for example, that you are the first

person the expert psychologist/biologist informs that she has discovered this

peculiar gene, and she offers you $1,000. Then you are in the following situa-

tion: you know that if and only if you believe that the psychologist can predict

your behavior, then she will be able to do so. So you confront a proposition

which you can make true by believing it, and make false by disbelieving it. It

is as though an extremely trustworthy friend had said to you “I can predict

what you will eat for lunch tomorrow, but only if you believe I can.” What

is the appropriate response if he then asks, “So, do you believe I can predict
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what you will have for lunch tomorrow or not?”12 Or suppose you watch as the

predictor approaches 1,000 people, some of them believe that she can predict

their behavior, which allows her to do so. But some of them do not believe it,

and her accuracy for them is no better than random guessing. She then ap-

proaches you and says, “If and only if you believe I can predict your behavior,

then I can.” She offers you $1,000 and says “If I predicted you would refuse,

I deposited $1 million in your bank account.” What should you do?

It’s hard for me to see how decision theory can even get a foothold in a

case like this, because in order for the decision theoretic machinery to operate

you need to first pin down your beliefs. You have to first decide whether or

not you believe the predictor’s testimony. And at least in my own case I would

find it very difficult to even answer the question of whether or not I believe

the predictor can predict my behavior here. (Have I received evidence that

she can predict my behavior? That depends on whether or not I believe she

can. If I do believe it, then yes I have, but if not, then no I haven’t.)

My point is that things start to go awry if a condition on the predictor’s

predictive ability is your belief in her predictive ability. And on grounds of

taxonomic simplicity, I am reluctant to insist that cases like this are coherent

and thus reveal some deep distinction in decision theory. I pass the burden

to those who want to make our lives more complicated, to show us that such

cases require that we do so.

12There are related examples in the Epistemic Utility Literature, e.g., Jennifer Carr’s Yoga
Teacher example (modified for my purposes) Carr (in press): Suppose your Yoga teacher
tells you “you can do a handstand, but only if you believe you can.” He then asks you “So,
do you believe you can do a handstand or not?”
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3.8 Objection 2: have we really eliminated the distinc-
tion between EDT and CDT?

You might think that everything in this paper misses the point in a

somewhat trivial way. For when I introduced the distinction between eviden-

tial and causal decision theory, I said that evidential decision theorists were

guided by subjective credences, where causal decision theorists are guided by

objective probabilities. But subjective credences are radically unconstrained!

The starting point of, for example, the dutch book argument, and the accuracy

argument, for probabilism is the assumption that we could at the same time

both be 90 percent confident it’s raining, and 90 percent confident it’s not.

(What the dutch book and accuracy arguments reveal is just that we should

avoid that situation, at least if we want to keep our money, or if we want our

beliefs to be as close to the truth as possible.) And there is nothing incon-

sistent in imagining a person who both (i) believes her refusing $1,000 will

provide evidence she has $1 million in her bank account, and yet (ii) believes

that her refusing the $1,000 will not cause $1 million to show up in her bank

account. So we can just stipulate that an agent is so constituted, and it will

follow that there will be a distinction between the recommendations of causal

and evidential decision theory, for that agent.13

That is a fair point. To an extent, I have abandoned subjective cre-

dences and thus evidential decision theory as it was originally spelled out by

Jeffrey Jeffrey (1983). Recall the alcohol-IQ case. Your friend has never en-

joyed alcohol, but forces the habit on himself after learning of a correlation

between drinking and IQ. I said he doesn’t receive any evidence that he has

a high IQ. And I think this would be so even if he does, in drinking, become

13Thanks to Sinan Dogramaci for this objection.
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more confident he has a high IQ. So the notion of evidence I am relying on

here is not simply increase in subjective credence.

But here, more precisely, is how I would like to be understood. I take

myself to have given an argument that it is not rational to believe that, e.g.,

your drinking is evidence you have a high IQ, if the only reason you are drink-

ing is because drinking is correlated with having a high IQ. And similarly, I

take myself to have given an argument that it is not rational to believe that

refusing the $1,000 is evidence the psychologist deposited $1 million in your

bank account.

Of course, someone might have irrational beliefs. And evidential de-

cision theory might recommend that someone with irrational beliefs take an

irrational action. But this is not objectionable. If someone irrationally be-

lieves that drinking a can of paint will make him happy, then evidential deci-

sion theory might recommend that he drink that can of paint. But that does

not constitute an objection to evidential decision theory, for it is no surprise

that irrational inputs yield irrational outputs. A similar problem, notice, will

arise for causal decision theory; if I mistakenly believe that drinking a can of

paint is valuable, and there is an action that will cause me to drink that can

of paint, then causal decision theory will recommend that I take that action,

even though it is irrational to do so.

What the Newcomb problem was supposed to show, I contend, is that

two rational agents, apprised of all the same facts, might be led to different

conclusions about what they ought to do, depending on whether they are

sensitive to the causal or the evidential structure of the world. But if you

are rational, I’ve here argued, the causal and the evidential structure of a

Newcomb problem world are the same.

84



Now, you might keep pressing here. You might say, ‘but nevertheless

you’ve admitted that, for some agents – namely those with irrational beliefs

– causal and evidential decision theory recommend different actions!’ That’s

right, but I think we can just as well explain that distinction as follows: there is

the action that decision theory recommends, given your beliefs, and the action

that decision theory would recommend, were your beliefs rational. That cap-

tures the distinction, but does not require our introducing the extra machinery

of causal decision theory.

3.9 Objection 3: what about QM correlations?

One last objection: recall that everything I said above relied on the

principle that every genuine correlation is the result of some common cause.

But aren’t quantum correlations a counterexample to this principle? Isn’t the

behavior of entangled particles correlated, even though there is apparently no

common cause which underlies that correlation?

The answer to that question depends on your interpretation of Quan-

tum Mechanics.14 But I do not want the argument I’ve given above to rely

on or require any particular thesis in quantum physics. So let us return to

our predictor, and imagine that there is a brute, quantum correlation between

her depositing $1 million in people’s bank accounts, and their refusing $1,000

when she offers it to them.

Before responding to the problem directly – and I realize I’m becom-

14See Ahmed & Caulton (2014) for discussion. They argue that interpretations which
do not rely on some common cause underlying a correlation present a problem for causal
decision theory. That problem is centered around this question: what does causal decision
theory recommend, if there is an objective correlation, but which is not underwritten by
any common cause? See Adam Koberinski & Harper (in press) for a response.

85



ing a bit of a broken record at this point – let me say that I think that even

if my argument falls apart here, we will still have discovered something in-

teresting – that, in a Newcomb problem, there is only a distinction between

the recommendations of causal and evidential decision theory when there is a

brute, uncaused, perhaps quantum mechanical correlation between two events.

I think that would be a surprising result. And many cases that people have

thought were Newcomb problems are not so constituted – e.g., medical New-

comb problems like the alcohol-IQ case discussed above.

But I think that argument I’ve given above actually applies equally

well here, even if a Newcomb problem is underwritten by a brute uncaused

correlation. Though I relied a great deal on the common cause which underlies

a correlation, I think that those common causes can be expunged; they can be

seen as a way to focus the mind, but they are ultimately unnecessary.

Suppose again you come across an ATM in the desert, and you watch

1,000 people either take or refuse the proffered $1,000. Those that refuse dis-

cover that the ATM deposited $1 million in their bank accounts before they

refused. But this time you know that the correlation is brute, and not under-

written by any common cause. Nevertheless, if you are an evidential decision

theorist, who would follow the recommendations of evidential decision theory,

then you know the following fact about yourself: that you would not refuse,

if you were unaware of the correlation between refusing and the machine’s de-

positing $1 million. And that supplies you with evidence that the machine did

not deposit $1 million in your bank account. And your now refusing doesn’t

change that – you can’t exploit the correlation twice, as it were, once to re-

ceive evidence that the machine did not deposit $1 million, and a second time

to receive evidence it did. Or, relying on our trusty example, suppose there
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was a brute, uncaused correlation between alcohol abuse and IQ. Your alcohol

hating friend learns about this, and so forces the habit upon himself. The

fact that he would not have abused alcohol, if were unaware of the correlation,

settles the question of whether his now drinking is evidence he has a high IQ.

It’s not.

The moral is this: when you know what you would do were you unaware

of a correlation, that alters the evidential force of your available actions. And

while it’s easier to recognize this when correlations are understood in terms of

common causes, the point stands even in the absence of those common causes.
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Appendix A

Probably Not that Improbable: More detail

on the continuous case

A.1

Here is a more thorough description of how I would like to think about

the continuous case discussed in Chapter 2.

Consider again the dartboard example, put in the language of statisti-

cians. Let x be a realization of a random variable X which follows a standard

normal distribution with mean µ, where µ is known to lie in a circle C with

area A. Here µ corresponds in the original example to the point your friend

is aiming at, and x is the point she hits. Let p(µ) be the objective prior dis-

tribution on µ over the points in C. Now, define the likelihood region Rλ(x),

for each possible realization x of X, as follows:

Rλ(x) = {µ ∈ C |φ(x|µ) > λ} where φ(x|µ) is the pdf of a standard normal distribution.

Rλ(x), in other words, contains all values of µ which assign a density of at

least λ to x. Finally, let bRλ
be a point on the boundary of Rλ. (See Figure 1

below.)

Now, consider the following question: what is the probability that a

λ-sized likelihood region, drawn around a realization of X, will have had a

prior chance less than c of containing µ?
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bRλ

Rλ

Area(C) = A

C

x

Figure A.1: Dartboard example, with likelihood region Rλ

For any fixed point x, the probability that X will be realized as x,

where Rλ(x) had less than a c chance of containing µ is just given by1

p(X = x ∧ p(µ ∈ Rλ(x)) < c)

= p(x|µ ∈ Rλ(x)) · p(µ ∈ Rλ(x)|p(µ ∈ Rλ(x)) < c)

+ p(x|µ 6∈ Rλ(x)) · p(µ 6∈ Rλ(x)|p(µ ∈ Rλ(x)) < c))

< φ(x|µ = x) · c+ φ(x|µ = bRλ
) · 1

But that upper bound, notice, is constant for every possible realization

of X. So the overall probability that a λ-sized likelihood region – drawn around

1A bit of commentary about the proceeding calculation: Refer to Figure 1, and consider
any point x on the dartboard. Now suppose that a λ-sized likelihood region around that
point had a very small prior chance of containing µ – that is, of containing the point your
friend was aiming at. Now ask: how would the world have to be arranged to make your
friend’s hitting x as probable as possible? There are two ways things could go here – µ could
be in Rλ, even though it was antecedently improbable, in which case x is most probable
if your friend is aiming directly at x. Alternatively, µ could fall outside Rλ, in which case
your friend’s aiming at a point directly on the boundary of Rλ makes x most probable.
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the realization of your random variable X – will have had a prior chance less

than c of containing µ is given by

p(X ∧ p(µ ∈ Rλ(X)) < c) =

∫
C

p(X = x ∧ p(µ ∈ Rλ(x)) < c) dx

<

∫
C

φ(x|µ = x) · c+ φ(x|µ = bRλ
) dx

< φ(x|µ = x) · c+ φ(x|µ = bRλ
)︸ ︷︷ ︸

Constant with respect to x

∫
C

1 dx

< [φ(x|µ = x) · c+ φ(x|µ = bRλ
)] · A

Finally, notice that we can arbitrarily decrease the value of both sum-

mands in that last expression. φ(x|µ = bRλ
) decreases with increases in our

chosen λ (because the points on the boundary of Rλ get further from x as λ

increases). And φ(x|µ = x) · c decreases with decreases in our choice of c. We

can therefore come to know, prior to observing the realization of X, that it

was arbitrarily improbable that we should witness a realization of X, where

its associated λ-sized likelihood region had a prior probability less than c of

containing µ. We simply have to be careful in our choices of c and λ.
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